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Optimal Life Testing Procedure for a
System with Exponentially Distributed Failure Times

Sang Un Yun*

ABSTRACT

The choice of constants that define a life testing procedure is considered in terms
of the test termination time (censoring time) and the number of items to be tested
subject to a given range of variance of the expected life time, where the failure time
of life testing is exponentially distributed.

1. Introduction

The life-testing problem has received a lot of attention in statistical literature. Gen-
erally the life-time distribution is assumed to be exponential and a censoring procedure
is used to estimate the parameters of this distribution. Blight (1972) has studied the
parameter estimation problem when the testing facility and the total replacement are
limited. He obtains the optimal numbers of items to start the test and to be replaced
during the test at a pre-determined total number of failures. In this paper we assume
that the total testing cost depends linearly on the number of tested items # and the time
period of the testing operation, 7 or the censoring time. The accuracy of an estimator
is measured by its variance. The optimal values of #» and T for a required accuracy
are obtained by using the exact variance, the Cramer-Rao lower bound, and Boardman
and Kendall’s approximation (1970), which is the same as Mendenhall and Lehman’s
(1960). A practical example is used to demonstrate the cost saving of these optimal

results.

* Korea Institute for Defense Analyses



78 Sang Un Yun

The optimal procedure to estimate the survival function is studied in Section 4. The

important extention for the grouped observations is considered in Section 5.

2. Optimal Number of Testing Items and Censoring Time

Let the life-time x of an item have an exponential distribution with density function
fGD=—Le, x>0, 60,
where 6 is an unknown parameter. It is well known (e.g. Moeshberger and David
(1971)), that the maximum likelihood estimator (MLE) 6 of @ is

,Z:. xi+(m—rYT

6= 7 y

)]

where # is the total number of testing items, 7 is the number of items failed before
the censoring time 7, and x; is the failure time of the jth item which failed before T
The exact mean and variance of # is not easy to obtain. Boardman and Kendall

(1970), and Mendenhall and Lehman (1960) have shown that

E@)=60—T/(1~e T +nTE(1/7) €))
and
V= {pm LE Lo L] ere{ L]

where # has a binomial distribution with parameters # and p=1—e-7/¢ and E[%} is
conditioned on 7>,

Exact values of the expectations E [—}/—] and E[%J can only be obtained numeri-
cally for small n. Boardman and Kendall (1970) modified Johnson's (1960) result to

obtain an approximate to them, i.e.,

Bl T @

and

17_ (n—2>(n~—3)
E[72—]— 2 {(n—1)p—1} {(n—1)p—2} ©

where p=1—e‘%. Mendenhall and Lehman (1960) also obtained the same result by

using a Beta approximation to a binomial distribution. F igure 1 compares the differe-

nces of the variance expressions, such as CRLB, Boardman and Kendall's (1970)
approximation (B) and the exact variance (E) when 6=10.0 and #=10 (10) 50, 70,
100 and 7=4.0 (2) 12.0, 15.0, 20.0, 50.0, 100.0. Figure 1 shows that the variance
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Figure 1. Comparison of the approximate variances and the exact variances for E(x)=0 when
6=10.

is more sensitive to the changes in number of testing items than that in censoring time.
And the CRLB seems to be nearly attained when # and (or) T are reasonably large.

As one can see from the previous formula, the test procedure is completely determined
by the choice of # and 7. If we let C; be the cost of one unit test running time and

C: be the cost of one test item, then the optimal test for a given variance of § is to



80 Sang Un Yun
minimize
C=C.T+Cin

subject to

Var (6)=7, (6
where V is a given value. The optimal # and T can be found by iteration method(e.g.
Newton’s method). The initial values of # and T can be found by letting Var(d) equal
to the CRLB of (1), i.e.,

52
Ve ——r @
=
It can be shown by the method of Lagrange multipliers that the optimal solution for
(6) and (7) is

A= Cik+ vC2E*X4C.C 0,
2C;

®

T:o{ln[c,+ C(,;” J-me.},

where
2
—17.

In practice # is unknown. We may use the previous knowledge of @ to solve for # and

k:

T. Table 1 lists various optimal 7T and # by the criteria of the CRLB, Boardman and
Kendall’'s (1970) approximation (B) for the variance, and the exact variance (E). These
values are recorded for five different ratios of cost, C. and C;; (9: 1), (7:3), (5:5),
(B:7), (1:9), and for the variance of the estimation, V in (6), equal to 1.0, 2.0(2)
16. 0.

Since the CRLB is nearly attained for large »n and (or) 7, the solution using (8)

appears to be quite good even with a relatively large variance limit, V, in (6).

3. An Example

Mendenhall and Hader (1958) analyzed some data on the failure times of radio tran-
smitter receivers; the failures were classified into two types: those confirmed on arrival
at the maintenance center, and those unconfirmed. Since they assumed that an item is
preordained to fall by only one cause according to a binomial mixture and an associated

conditional failure density function, Boardman and Kendall (1970) considered other
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Table 1. Comparison of optimal solutions to estimate the life time by various criteria such

that CRLB, Boardman’s approximation (B), and exact variance (E).

Ct:LO ct:3.0 C¢=5.0 Ct:7.0 C::9.0
Ci=9.0 Ci=7.0 Ci=5.0 Ci=3.0 Ci=1.0

VAR T n T n T ”n T n T %
1.0 CRLB | 45.21 101 32.29 104 24,77 109 18.08 119 l 10. 10 157
B 45.50 102 34.46 105 25.62 111 18.63 122 10. 22 162
E 52.16 102 37.15 106 25.39 112 18.33 123 10. 38 161
2.0 CRLB | 38.48 51 25.93 53 19.17 58 13,54 67 7.26 96
B 41.41 52 29.43 55 20.23 61 14. 40 70 7.60 101
E 47.10 51 27.63 55 20. 18 60 14.83 68 7.71 100
4.0 CRLB | 31.95 26 20.19 28 14.35 32 9.83 29 5.17 51
B 38. 66 27 22.59 31 15. 46 36 10.94 43 5.62 67
E 32.96 27 22.15 30 16.28 34 11.04 42 5.83 66
6.0 CRLB | 27.91 17 17.35 20 11.94 23 8.08 29 4.20 47
B 35.06 19 19.44 23 13.65 27 9.11 34 4,76 54
E 36.12 18 21.21 21 14.63 25 9.36 33 4,94 54
8.0 CRLB 25.42 13 15. 04 15 10. 65 19 7.07 24 3.68 40
B 33.24 15 17.49 19 11.92 23 8.15 29 4,24 47
E 33.29 14 19.25 17 13.02 21 8.53 28 4.50 47
10.0 CRLB | 23.89 11 13.95 13 9.56 16 6.42 21 3.29 35
B 37.24 12 17.43 16 11.28 20 7.44 26 3.83 43
E 28.35 12 17.05 15 12.57 18 7.96 25 4.17 43
12.0 CRLB | 22.08 9 12.72 11 8.75 14 5.72 18 2.96 31
B 31.47 11 17.38 14 10.76 18 6. 90 24 3.67 39
E 30. 36 10 17.05 13 11.21 17 7.54 23 3.96 40
14.0 CRLB | 21.04 8 12.04 10 7.88 12 5.22 16 2.79 29
B 29, 88 10 16.16 13 9.89 17 6. 70 22 3.43 37
E 28.33 9 16.02 12 11.49 15 7.46 21 3.79 38
16.0 CRLB 19. 88 7 11.31 9 7.42 11 4,96 15 2.62 27
B 30.68 9 15.84 12 9.45 16 6.31 21 | 3.30 35
E 28.91 8 15. 82 11 11.20 14 7.18 20 | 3.71 36

_ point estimates of the parameters by assuming that an item on test can fail by either
one of the other two subsystems. They obtained the point estimates of two parameters,
9, and 6, as §,=450.61, 8,=918.07, where n=369 and T=630.

Since 6, and #, are the parameters from two independent exponential distributions
one can combine them into one exponential distribution with parameter 6=26,8,/(6,+6,).

Accordingly,
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E(t)=0=91”“T”32:302.3
One can find the exact variance (E) and the approximate variance (B) by Boardman
and Kendell (1970) and the CRLB when #n=369 and T=630, which are shown to be
Var(E£)=312.19
Var(B)=285.29 ©))
CRLB =282.75

Table 2. Optimal solution for n and T in Mendenhall and Hader’s example with different
ratios of costs, C: and C..

€cl  a: | @ | G 7:3) ©:1
VAR]Tnc]Tnc'Tnc T n C T n C

CRLB [282. 75(738.6 353 3915.6/437.9 422 4267.8]299. 9 513 4064. 6/200. 8 665 3400. 3(103.7 1113 2046. 0
B |285.29(735. 8 354 3921.8/440.5 422 4275.6/298. 9 516 4074.7|201. 2 667 3409.4{104.4 1110 2049. 9
M 630.0 369 £951.0630.0 369 4473.0/630. 0 369 4464.5/630.0 369 5517.01630.0 369 6039.0

Table 2 summarizes the optimal solutions for different ratios of the costs, C, and C:
under the restrictions that they have the same variances as (9). In Table 2, each row
for the CRLB, B, shows the optimal T and n, and the total cost, respectively for
different ratios of the costs C, and C; (1:9), (3:7), (5: 5), (7:3), (9:1), with
respect to each criteria as constraints. The last row (M ) shows the total cost comparison
for the case when the test is conducted with the 7 and # in Mendenhall and Hader’s
(1958) paper. The exact variance E is not computed since it requires a large amount
of computing time.

As one can see from Table 2, there are large cost differences between the optimal
design and the design in Mendenhall and Hader’s (1958) example when the cost of unit

testing time, C., is more than the cost of unit item, C,.

4. Optimal Procedure to Estimate the Survival Function

In this section, optimal # and T are derived to estimate the survival function.
The survival function for the exponential distribution is
H<t0>:pr<X>to):1—F(to)

to
=€~ 5

where £, is a given time and X is a random variable of survival time.
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From (1), maximum likelihood estimator of H({¢,),

AHGpy=exp| — o ©))
> x+m—nT
j=1
Now, employing the notation of Section 4, we obtain the expectation of quantities
leading to the CRLB. Since the joint density function of ordered failure time, x;, ---, %,
and the number of failures, 7, given censoring time, 7, and the number of items to

be tested, nu, is

fGry vt 7l 2= Ty =4 [ TT 1o 5]

[ e e

where, as in Section 4,

Hy=H(t)=e"§

and the logarithm of the likelihood function is

nLe$ fin(—1nHy)—1nte+ “;H" w0} + (n=1) nH, 1
i= 0

t,
Now, the second derivative is found to be

*lnL

= - e R )

LHj tH:

1 & T .
(InH;+1) z X N (n—r)

_ v
- Hi(InH,)* LHE

Furthermore, the facts that
ETH(, x)]=E(E[H(r,x)|r]D)
and that the density of 7 is

g(”)z( " )(1_e‘f—>'(e-_3_>n-,

lead to
( TIan )
E[ 92nL J: m\l—e =« /QInHy+1)
oH; H3(InH,)®
Thus,
CRLB(Hy = - —— Hiln'ls 10
TinH,
n(l"e to )(211’1Ho+1>

Now the optimal test for a given accuracy, as in (6) is to minimize
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Table 3. Optimal procedures to estimate the survival function for the various combinations of

1,’s and cost ratios when the prior estimate of 8 is 10.

Ce——-l C¢=1 C:=3 Cz=5 C¢=7 C:=9 C‘=100
Ci=100 Ci=9 Ci=7 Ci=5 Ci=3 Ci=1 Ci=1
to CRLB T n T ”n T n T n T n T n T "
6.1 0.0025] 70.27 199 51.99 200, 38.83 203| 30.88 209 23.48 220 13.78 267| 4.43 557
0. 0100} 62.16 50| 38.48 51} 26.08 53| 19.24 58| 13.57 67| 7.29 96| 2.23 249
8.0 0.0025| 67.08 86} 43.75 87| 30.94 90| 23.53 95/ 17.07 105 9.43 141] 2.93 339
0.0100] 53. 82 21| 30.60 220 19.29 25| 13.60 28 9.27 35 4.84 56| 1.47 157
10. 0 0.0025| 62. 90 54i 39. 26 55| 26.78 58 19.85 62 14.05 71 7.57 101} 2.32 261
0. 0100; 49. 22 13| 26.47 14; 16.01 16| 11.06 200 7.44 25 3.85 42/ 1.16 123
12.0 0.0025] 59. 33 37, 35.71 38| 23.62 41| 17.14 45| 11.93 53 6.33 79 1.93 212
0.0100| 45.57 9/ 23.32 10! 13.67 12| 9.32 15, 6.22 200 3.21 34/ 0.97 101
15.0 0.0025] 54.22 22| 30.96 23 19.58 26| 13.84 29 9.44 36, 4.94 57/ 1.50 161
0. 0100 40. 60 5/ 19.31 6/ 10.89 8 7.32 100 4.85 14) 2.49 25 0.75 77
18.0 0. 0025 49. 30 13 26.52 14} 16.05 17) 11.09 200 7.47 25 3.87 42/ 1.17 123
0.0100| 35.84 3] 15.81 4/ 8.64 5 5.76 71 3.80 100 1.94 19/ 0.58 60
20.0 0.0025| 46.03 9| 23.70 10| 13.94 12| 9.52 15 6.36 200 3.28 34/ 0.99 103
0.0100] 32.73 2 13.72 3 7.38 4 4.89 6 3.22 8 1.65 16! 0.49 50
25.0 0.0025] 37.86 41 17.25 5 9.55 6 6.38 8 4.22 120 2.16 21| 0.65 67
0.0100] 25. 22 1| 9.39 1 4.91 2l 3.23 3 2.12 5 1.08 10/ 0.32 32
30.0 0.0025| 29. 86 1 11.95 2l 6.35 3 4.19 5 2.76 70 141 13| 0.42 43
0.0100[ 18.41 0 6.24 0 3.21 1 2.11 2 1.38 3 0.70 6/ 0.21 21
50.0 0.0025 6.96 0 2.13 0| 1.08 0 0.71 0 0.47 1] 0.24 2 0.07 7
0.0100f 3.53 0 1.07 0 0.54 0 0.36 0 0.23 0 0.12 1l 0.04 3
C=C.T+Cin

subject to

CRLB(H))=V an

where V is a given value. Again, by Lagrange multipliers, the optimal solution for

(10) and (11) is

where

A

P= —aln[

A= —

(2a—b)— V5(h—4a)

29
Zp- 20
Oe []

2a

0Zv<1—e'%)(

a=C,6° V(—

2ty

7 +1>

2t
7+1

]

(12
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and

20

b=Cytie "9 .
In practice @ is unknown. But we may use the previous knowledge of 6 to solve for »
and 7. Table 3 shows some eXamples of optimal procedure to estimate the Survival
Function for the various cases such that #=6.1, 8.0, 10.0, 12.0, 15.0, 18.0, 20.0,
25.0, 30.0, 50.0, and (Ci;Co)=@100:1), (9:1), (7:3), (5:5), 3:7), (1:9,
(1:100), when 6 is assumed to be 10. It is quite intuitive that when ¢, is much larger

than the expected survival time 6, we do not need too many items for testing.
5. Optimal Procedure Based on Grouped Observations

Another important extension of the general method is to group the observations into
intervals. Suppose that the range of variation of the lifetime is partitioned into %4 time
intervals of length g such that T=hg. Let 7,, i=1,---, h, denote the number of indiv-
iduals failing in the interval ((¢—1)g, ig). Then r:“;“lr,- is the total number of failures
in the test.From Moeschberger and David (1971), th(;-MLE of 8, 8, is

b= e
An[1+(r—r)/ 3, G— D7 |

and
CRLB(9)=";;<1+r)
where
— 02(e‘%—1)z
i)

Here, again, » is the number of items to be tested.

-1

Now, the optimal design is to minimize
C=C:gh+Cin
subject to
v=CRLB(6)
Here, again, C. and C; are given as the cost of one unit of testing time and the cost
of one item, respectively, and g and v are given.

By Lagrange multipliers,
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h=— 1nE
g
and
n= %2—(7’+ D

where

E=_A+tB— vBT3ACH (e—1)?

2Ae
ezeT
A= —ZUngZe
B=C#*(e—1)?

Table 4 lists some examples of optimal procedure for various cases such that the
ratios of Ci, Ci are (1:100), (1:9), (3:7), (5:5), (7:3), (9: 1), (100 : 1) and
CRLPB’s are 1.0, 4.0, 8.0, 12.0, and g's are 0.4, 1.0, 2.0 when 6 is assumed to be
10. It shows that the censoring time, T=hg, remains the same despite of the changes
of £, and the number of testing item, #, is slightly increased as g becomes larger.
And in comparison with Table 1 for the case of continuous observations, # and 7 in

Tablel are, of course, smaller than those in Table 4.

Table 4. Optimal procedures to estimate the life time for the grouped data when 6 is assumed

to be 10.
C::1 Ct=1 Ct=3 C:=5 ct=7 Cl=9 C:=100
Ci=100 Ci=9 C.=7 C:=5 C:i=3 Ci=1 Ci=1

CRLB ¢ h n h n h n h #n h " h ”n h n

1.0 0.4 173 208 114 207 81 203 62 198 46 190 26 168
1.0 68 222 46 220 33 217 25 211 19 202 11 177
2.0 34 249 23 247, 17 243 13 236 10 224 6 194

4.0 0.4 139 51 80 50 52 48 37 45 25 41 14 35
1.0 56 55 32 54 21 51 15 48 10 43 6 37
2.0 28 62 17 60 11 57 8 53 5 45 3 37

8.0 0.4 122 25 65 24 39 23 27 21 18 19 10 16

126
131
127

- WD = DN W —_ N [ NI N ']
[\
ol

1.0 49 27 26 26 16 24 11 22 8 20 4 16| 13
2.0 25 31 13 29 8 26 6 24 4 20, 2 15 12,
12.0 0.4 112 17 57 16 33 14 23 13 15 12 8 10 9
1.0 45 18 23 17] 14 15 9 13 6 12 4 10 8
2.0 23 20 12 19 7 17| 5 15 3 12 2 10, '8
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6. Conclasion

The optimal procedures given by (8) and (11), which are obtained by the criteria of
CRLB instead of the exact variance, are satisfactory as shown in the Table 1 except
for the extreme cases. Even in the extreme cases one can get some general idea by the
criteria of CRLB about that how many items and how much time for test are econo-

mically required to achieve certain accuracy of the estimations.
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