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Analysis of Modified Digital Costas Loop
Part 1 : Performance in the Absence of Noise
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Abstract

A new type of dégital phase-locked loop (DPLL) called the modified digital Costas loop
is proposed and analyzed. The main feature of the proposed loop is that the phase error
detector of the loop has linear characteristic. This results from the use of the tan™ (+)
function in the loop. Accordingly, the DPLL can be characterized by a modulo-27 linear
difference equation.

This paper is divided into two parts. In Part I we describe the proposed system, and
analyze the performance of the first- and second- order loops in the absence of noise by the
phase plane technique. The locking ranges for the DPLL’s to achieve exact locking inde-
pendently of initial conditions have been obtained in closed forms. Also, the false lock and
oscillation phenomena occurring under some initial conditions have been considered. These
results have been verified by computer simulation.

In Part II we analyze the proposed system in the presence of noise. The steady state
probability density function, mean and variance of the phase error have been obtained by
solving the Chapman-Kolmogorov equation. These results will be presented in Part II.

1. Introduction

RS, WEREAENRE B R OEFLER
(Dept. of Electrical Science, KAIST) Dunng the past two decades’ ana_log phase-
HRZHE 19814 121 26H locked loops (APLL) have played an important

- 38 -



19824 4 H | T 8et ¥ 19%

role in synchronous communication systems
and many other applications. In recent years,
as a result of the fast progress of digital inte-
grated circuit technology, digital systems having
many advantages over analog counterparts,
such as high reliability, small size, lower cost
and so forth, are rapidly replacing analog sys-
tems. Among these systems, digital phase-
locked loops (DPLL’s) are emerging as im-
portant digital subsystems.

Since the late 1960’s, a variety of DPLL’s
have been proposed and analyzed!!®l A
DPLL model that is essentially a discrete
version of the conventional APLL was first
proposed by Gill and Gupta'® *®. Since then,
many research papers on this model have been
published by others!?¥14!  The behavior of
Gill and Gupta’s DPLL is characterized by a
sinusoidal nonlinear difference equation. Be-
cause of this sinusoidal nonlinearity, it is
difficult to analyze exactly the behavior of the
system.

In this paper, a new type of DPLL called
the modified digital Costas loop is proposed
and analyzed.
terized by a linear difference equation which
has a mod-27 feature. Unlike other DPLL’s,
this system has a unique property in that the
phase error detector characteristic is linear as
a result of insertion of a tan™(*) function in
the loop. It is xnown'®! that the linear phase
characteristic results in many attractive features
in comparison with the conventional Gill and
Gupta’s DPLL. These include wider lock range
and less stady-state phase error of the first-
order loop for an input with frequency offset,
less sensitivity of the convergence to initial
phase errors for the second-order loop, and
insensitivity of the locking conditions to
variation of input signal power.

In the Part I of this paper we analyze the
first- and second-order loops graphically by
using phase plane plots, assuming that they
are free of noise. Locking mechanism in the
loops depends to a large extent upon the

The proposed loop is charac-

E2H)

initial phase error conditions. False lock
and oscillation phenomena occurring under
some initial conditions are considered. The
locking range for the loop to obtain exact
locking independently of initial conditions
is obtained in a closed form.

In the Part II of this paper the behavior
of the first- and second-order-loops in the
presence of noise is analyzed based upon the
Chapman- Kolmogorov equation“sl When
the input signal is corrupted by additive
Gaussian noise, it has been found that the noise
process in the loop becomes Pician as a result
of inserting the tan™!(*) function in the loop
for phase error detection. The steady state
probability density function and variance of
phase error are obtained.

Following this introduction, in Section II
the modified digital Costas loop is described
and its system equation is derived. In Section
III the behavior of the first-order loop is
analyzed in the absence of noise when there
exists initial phase offset only and also when
there exists frequency offset. In Section IV
we analyze the second-order loop under the
same conditions. Finally, we draw conclusions
in Section V.

II. Description of Modified Digital Costas
Loop
1. Structure of the Loop

A block digram of the modified digital
costas loop is shown in Fig. 1. The loop is
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Fig. 1. Block diagram of modified digital Costas
loop.

composed of a 90° phase shifter, two samplers,
a phase error detector, a digital loop filter and
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a digital clock as a voltage controlled oscillator
(VCO). Of these subsystems, the first three
form a phase detector and perform the function
to detect phase error at sampling instants.
Note that, unlike the conventional analog
Costas loop[”]
proposed system is obtained by phase shifting
the input signal rather than the digital clock
output. Also the proposed loop is different
from the conventional Costas loop in that it

, the quadrature signal of the

has a tan"! () function rather than a multiplier.

To detect the phase error at a sampling
instant, the sampler 1 takes a sample x(k)
from the input signal, and at the same time,
the sampler 2 takes another sample y(k) from
the 90° phase-shifted input signal. Then,
phase error is obtained by getting a function

of tan’’ [;%]3]. Detection of positive zero

crossing is obtained by the sampler 1. Since
the output of the phase error detector is equal
to the phase error between the incoming signal
and the digital clock at a sampling instant, its

characteristic curve is linear as shown in Fig. 2.
e

mH-

Fig. 2. Characteristic curve of phase
error detector.

The behavior of the loop depends largely
upon the transfer function of the digital loop
filter D(z). The (first-order loop filter has
just a proportionality constant K, i.e., D(z)=K.
For the second-order loop, we use the propor-
tional-plus-accumulation filter given by

b
D(z)= a+ 0

—, (1)

where a and b are constants. The output of
the digital loop filter provides a control signal
to the digital clock for sampling. In our system
the digital clock provides sampling time to
the two samplers. The time interval between
the kth and (k+1)th sampling instants is con-
trolled by the phase error at the kth sampling
time passed through the digital loop filter.

2. System Equation Describing the Loop
Behavior

Let the incoming signals to the samplers
1 and 2 be x(t) and y(t), respectively, and
assume that they are free of noise (i.e. n(t)=0).
One can express x(t) as

x(t) = s(t) = ‘/2Pc sin [wot+6(D1,  (2)

where Pc is the power of input signal s(t), Wy
is the free running frequency of the digital
clock, 8(t) [A Awt + 60] is the phase process
of s(t). HereAw is the initial frequency offset,
0, is the initial phase offset, and wW[A w, +
Aw}l is the frequency of the input signal
Also, since y(t) is a 90° phase-shifted signal of
x(t), it is represented as

Y(t)=\/§§c cos [w t+6(t)] . (3)

When x(t) and y(t) are sampled, the sampled
values x(k) and y(k) at the kth sampling instant
are given respectively by

yk) = V2P,
and x(k) = \/2'56 sin ¢(k), (5)

where  ¢(k) & w_t(k) +6(k).

cos ¢(k), 4)

Then, the output of the phase error detector,
e(k), is

e(k) = tan' [x(k)/ y(K)] . (6)

Note that in the noiseless case, e(k) is equal
to ¢(k). Consequently, the output of the
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digital loop filter is given by
ck)= D(z)* ¢(k). (7
where D(z2) can be regarded as an operator.
Since the interval T(k) between t(k) and t(k-1)
is controlled by the control signal c(k), we have
T(k) = T, - c(k-1), (8)

where To is 21r/(.uo representing a period of
the digital clock. As an illustration, for the
first-order loop with D(z) = K, the relationship
between T(k) and ¢(k) is shown in Fig. 3.

£\
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Fig. 3. Relationship between ¢(k) and T(k).

In this case, c(k) is proportional to ¢(k). The
total time t(k) up to the kth sampling instant
is
k .
t(k) = t(o) + _El TG)
J=
k-1
=kT - X «¢(), (9
(o) j=0
where t(o) has been assumed to be zero. Ac-
cordingly, ¢(k) is given by

¢(k) = mod-27 [w, t(k) + 6(x)}

i}

k-1
mod-2m [0(k) — w, _EO c ()l
J=

k-1
= Aw-kT0+60— W, j=EO c()-  (10)
From the mathematical bases shown above,
the difference equation characterizing the loop
in the absence of noise can be derived as

Pok+1) = o(k) — w * D(z) (k) +2n - Aw/wo.

(11)
This-erquation will be the basis of our analysis

in the sections that follow.

III. Analysis of First-order Modified Digital
Costas Loop

Here we consider the first-order loop be-
havior in the absence of noise for two dif-
ferent cases; the case of phase offset only and
the case of frequency offset.

1. Case of Phase Offset Only

If we assume that the input signal has only
phase offset (ie., Aw=0), for the first-order
loop the system equation (11) reduces to

Blk+1) = (1 - wyK) B(k). (12)

For convenience of analysis, we shall assume
from now on that the free running frequency
w, of the digital clock is normalized to unity.
Then, from (12) the steady state phase error
¢, must satisfy

b = (1=K) g (13)

since ¢p(k+1) = ¢(k) = ¢ss in the steady state.
Accordingly, ¢’ss must be zero.

Let us now consider the behavior of the loop
for different values of K. Solving (12) for
¢(k), we obtain

$(k)= (1-K)¥ (o), (14)

where ¢(0) is the initial phase error. Since ¢(k)
must be zero in the steady state, it is clear't}.xat
the condition for the loop to be in lock is

1 -KI<1, (15)

Fig. 4 shows the phase plane plots for different
values of K. Fig. 4 (a) shows the case for
0 <K <1 that results in monotonous locking
Fig. 4 (b) gives the plot for K=1 in which case
locking occurs in one step. Fig. 4 (c) is the
plot for 1 < K < 2 representing the case of
oscillatory locking. Fig. 4 (d) shows the case
for K > 2. One can see that divergence occurs
in this case. In these figures the initial phase
point is represented by PO, and subsquent
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Fig. 4. Phase plane plots of first-ordet joop for
different values of loop gain (w=1).
(a) 0<K<1 (b) K=1
(¢c) 1<K<K2 @ K>2

points can be determined along the arrows.

2. Case of Frequency Offset

When the input signal has a frequency offset
initially, the system equation becomes from
(11)

p(k+1) = (1 — wK) ¢k) + 271 (w — 1) (16)
Since ¢(k+1) = ¢(k) in the steady state, the
steady state phase error ¢ss must satisfy

b= (1

from which we have

— wK) P+ 2m(w — 1), a7

2 1
b= (1~ (18)

Note that, since T(k) = T, — K-¢(k-1) in the
first-order loop, steady state clock interval

T _ becomes -2% Solving (16) for ¢(k) by

ss
z-transform, we obtain

B0 = T (1) + (1 —wK)E

- 1(0) = 2 (1 -y, (19)

Let us now consider conditions for the
loop to achieve locking. Note from (19)
that in order for ¢(k) to converge as k becomes
large, we must have

11 -wK I<1. (20)

Thus, the range of w is given by*
2

However, this condition is not sufficient for
exact locking, because the system equation
(16) must also be considered in the mod-27
sense.

Let us determine additional conditions by
considering the behavior of the loop with the
phase plane plots.

Fig. 5 shows the phase

=7 ;;‘, p?qw dik) _J 2 govr S0
e L/:Jr

(d)

Fig. 5. Phase plane plots of first-order loop
(w#1).
(a) Oscillation
(b) and (c) clases of false locking
(d) Exact locking

* It should be noted that (21) is actually 0 < w/w,,
< 2/K. But, since w, has been normalized to
unity, one can write the inequality as given in
(21).
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In this
figure, the straight line corresponding to the
system equation (16) is represented by the solid
line. The solid line segment outside the rect-
angle mus: be shifted by 27 to be inside the
rectangle because of the mod-2m property.
Fig. 5 (a) shows the case of oscillation that

plane plots of four different cases.

occurs along the arrow because the steady
state phase error does not exist in the interval
{(-m, ). Fig. 5 (b) represents the phase plane
plot for the case that false lock can occur under
some initial condition. When the initial phase
error is in the interval (-m, p), the loop achieves
exact locking. But, when it is in the interval
(p, ), false lock occurs and the loop becomes
locked at a frequency other than the desired
frequency w. Here, p can be interpreted as
the boundary of initial phase error for false
lock to occur. Fig. 5 (¢) represents the case
similar to Fig. 5 (b). The difference in this
case is that the solid line has been shifted
upwards. Thus, when the initial phase error
is in the interval (p, ), the loop achieves
exact locking. But, when it is in the interval
(-m, p), false lock occurs. Finally, in Fig. 5
(d) we show the case that solid line corres-
ponding to the system jsequation (15) is inside
the rectangle. In this case the loop achieves
exact locking always independently of inital
conditions.

From the above discussion it is clear that in
addition to (21) the following three conditions
must also be satisfied to achieve exact locking.
First, the value of ¢ss must be in the interval

(-m, m). This condition is represented by

Paid 1
from which we obtain
2 2

Second, when ¢(k) =+m, ¢(k+1) must be in
the interval (-r, m). When ¢(k) = 7, we must
have.

F(l - wK) m+2m(w — 1) i<m, (24)

and consequently

0<w <2z (252)

0< K<2. (25b)
Also, when ¢(k) = -m, we must have

(1 —wK)m 27 (w = D) 1<y (26)
or

One may note that the phase plane plot shown
in Fig. 5 (a) is for the case when the first
condition, i.e., (23), is not met. Those shown
in Fig. 5 (b) and (c) are respectively the cases
when the second and third conditions, i.e.,
(25) and (27), are not satisfied.

Accordingly, from (21), (23), (25) and (27)
the desired conditions to achieve exact locking
independently of initial conditions are given
as follows :

2 2 4
m<w< min. | 2K 2+K] , (28a)
and 0<K<?2. (28b)
w
= 2_
ok (o) w= 2-K
=8 _
{b) W'Z*K
X (0) we5og

Fig. 6. Desired locking range of first-order loop.
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The area enclosed by the inequalities (28) is Fig. 7. Phase plane (top) and steady state locking

ploted in Fig. 6. processes (bottom) of first-order loop.

(a) Oscillation (w = 1.4, K = 0.2 and
Po = 0)

(b) False locking (w = 1.6,K = 1, Po =0)

Various simulation results for phase plane
plots and steady state locking processes are
shown in Fig. 7. Fig. 7 (a) shows the phase

(c) Exact locking (w = 1.1, K = 1.2,
Plket) Po =-2.5 rad)
1r (Locking always occurs indepen-
dently of initial conditions.)

=15 7 p k) plane plot and the steady state locking process
when the condition (23) is not met and thus
oscillation occurs. Fig. 7 (b) shows the same
when the condition (27) is not satisfied and
consequently false lock occurs. Fig. 7 (c)

shows the case when the desired locking con-
%wv%%% ditions (28) are satisfied and thus exact locking
is achieved always independently of initial con-

@ dition.

AR IV. Analysis of Second-order Modified Digital

Costas Loop

v

We now analyze the performance of the
= 3 Bk second-order loop, assuming that the loop
filter takes the form of the proportional-plus-
accumulation filter given by (1). Again we

- consider first the case of phase offset only
and then the case of frequency offset.

&%AU%W 1. Case of Phase Qffset Only

o) In this case the system equation becomes
from (1) and (11)

$lket)

o(k+2) = (2-a-b) p(k+1) — (1-2) (k).  (29)

In the steady state we have ¢(k+2)=¢(k+1)=
¢(k). Therefore, the steady phase error ¢ss
o ) = Pk must become zero to satisfy (29).

Now let us consider the locking conditions
for the second-order loop. Taking z-transform
of both sides of (29), one can obtain

_ $(0)2 +19(1) - #(0) - 2-a-b)]z
®() = 22 - (2-ab)z +(1-a) ’

(30)

(©

_44_.
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where ®(z) is the z-transform of ¢(k). First
of all, note that for the loop to be locked,
the roots of the denominator of (30) must

be less than one. This requirement leads to

a >0, (31a)
b >0, (31b)
and 2a+b < 4. (31¢)

The region that satisfies (31) is the triangle
(R;, R;, R; and Ry) shown in Fig. 8. These
conditions, however, are not sufficient to
guarantee the zero steady state phase error.
In addition, the mod-2n feature of the linear
difference equation (29) must also be con-
sidered.

Let us consider these additional conditions
geometrically. In the case of the second-
order loop, the phase plane plot can be con-
sidered in a three-dimensional space. For the
second-order loop to achieve locking, ie.,
to have the zero steady state phase error,
the phase plane plot that may be obtained
from (29) must pass through the inside of two
planes ¢(k+2) = tk in the region enclosed by
four planes ¢(k) = tk and ¢ (k+1) = *m. In
view of these properties, the following two
conditions must be satisfied. First, when
¢k) = 7 and ¢(k+1) = F7, we must have
1¢(k+2)] < m. This condition is represented

by
[(2-a-b)7+(l-aym | <m

or2<b+2a<4 (32)

Second, when ¢(k) = £7 and ¢(k+1) = 7, we
must have | ¢(k+2)| < m. This condition is
represented by

[(2-ab)ym — (l-a)m 1< 7. (33)
or 0<b<2

The regions enclosed by the inequalties (32)
and (33) are R; and R4 in Fig. 8. In these
regions, the loop is locked to the zero steady
state phase error.

b

Rz
2
R3
1
Ry Ra
0 1 2 °

Fig. 8. Oscillation (R;), non-zero steady state
phase error (R,), false locking (Rj) and
exact locking (R4) regions of second-
order loop with initial phase offset only.

Let us now consider what happens when the
above mentioned conditions (32) and (33)
are not satisifed. First, we examine whether
there exists a possibility that the loop may
oscillate in the steady state between ¢ss and
"¢ss when the first condition (32) is not met
(this case corresponds to the region R, in Fig
8.). We can have from (29) steady state phase
erTors ¢ss and -d)ss such that

bgs = - (2-a-b) o — (1-a)p +2mm  (34)

holds, where m is an integer. Solving (34)

for ¢ss’ we have
2mn
s~ T2ab
In the case that (32) does not hold and thus
0 < b + 2a < 2, there exists an integer m=t1
for which I¢. ! is not zero and less than .
Therefore, in the region R, we get a possibility
that the loop may oscillate between ¢ss and
'¢ss for some initial conditions. Second, when
the second condition (33) is not met (this
case corresponds to the region R, in Fig. 8.),

(35)

there exists ¢ss such that

_.45_.
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¢ss = (2—a—b)¢>Ss — (l-a)qbSS + 2mm (36)
holds, from which we have

2mm
ss b (37

Because (33) does not hold, and thus 2 < b <
4, |¢ss| is again not zero and less than 7 for
m=+1.

Note that from (7) and (8), the difference
equation relating to the sampling clock interval
T(k) of the second-order loop is

T(k+1) = T(k) — (atb) ¢(k) + ap(k-1). (38)

In this case, if ¢, > 0 (ie., m=1), T(k) would
decrease monotonously, and eventually be-
comes negative. This is unrealistic. Therefore,
m can take -1 only. Consequently, ¢ss becomes

-3 and from (38), the difference between

T(k) and T(k+1) is given by 2m. Thus, the
sampling interval increases at the rate of one
cycle per step in the steady state. As a result,
in the region R,, there exists a possibility that
the loop may be locked to a non-zero steady
state phase error for some initial conditions.
Hence, for the loop to be locked to zero steady
state phase error independently of initial
conditions, a and b must take the values in the
regions R3 and R, in Fig. 8.

Consider now how the initial conditions
affect the locking mechanism in the regions
Rz and R4. Let z-transform of the loop
filter output c(k) be C(z). Then, from (1),
(7) and (30), C(z) is given by

- [(at+b)z - a]
z-1)

[¢(0)z? + ¢(1) — {¢(0)* (2-a-b)lz}]
(22 - 2-ab)z +(l-a)] - 69
Thus, the steady state value Cos of c(k) is by
the final value theorem of z-transform

C(z)

¢ = lim
ss  z->1

= (1) + ¢(o) - (atb-1). (40)

(z-1) C(z)

For the loop to be locked at the desired
normalized frequency, the steady state value
TSs of the sampling clock interval T(k) must
Note that, since T(k) is To-
c(k-1), TSs is To_css' Therefore, we must have
CSS=0' Thus, from (40), we have

Pp(1)= -¢(0) - (atb-1). (41)

For the loop to achieve correct locking, ¢(0)
and ¢(1) must be in the interval (-w, w). Since
(41) represents a straight line on the plane of
(¢(0)), ¢(1)), 1¢(1) | must be less than m for
¢(0)+m. That is,

lop(1) | = {7+ (atb-1) I<m (42)

or lath-1|<1. (43)
Thus, we have
0<a+b<2. (44)

Consequently, it can be concluded that, for
the loop to be locked to the desired frequency
w, independently of initial conditions, the
inequalitities (32), (33) and (44) must be
satisfied simultaneously. The region that
satisfies these inequalities is R4 in Fig. 8.
If the loop filter parameter values a and b
are chosen in the region of Rj in the figure,
the loop may be false-locked to a frequency
other than the desired frequency w, with zero
steady state phase error.

2. Case of Frequency Offset

We proceed in the same way as we analyzed
in Sections III-B and IV-A. When initial fre-
quency offset exists in the loop, the system
equation becomes from (11)

d(k+2) = [2-(atb)w] @(k+1) - (1-aw) ¢(k).
45
Taking z-transform of both side of (45) and
solving for ®(z), we obtain

$(0)z2 + [¢(1) - $(0) * {2-(atb)w}]-2z

22 - [2-(atb)w] z + (1-aw)
(46)

d(z) =

_46_
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As before, for the loop to be locked, the roots
of the denominator of (46) must be less than
one. To satisfy this condition, we must have
the following inequalities :

aw >0, (47a)
bw >0, (47b)
and bw +2aw <4, (47¢)

Areas enclosed by these inequalities are plotted
as regions Ry, R,' and Ry’ in Fig. 9. In
addition, to guarantee zero steady state phase
error, we niust again consider the mod-27
feature of (45). As discussed in Section IV-A,
to achieve locking to zero steady state phase
error, the phase plane plot corresponding to
(45) must pass through the inside of two plane
¢(k+2)=tm in the region enclosed by four
planes ¢(k)=tm and ¢(k+1)Fxm. Accordingly,
the following two conditions must be satisfied.
First, when ¢(k)=tm and ¢(k+1)=Fm, we must
have I¢(k+2)| < m. This condition is repre-
sented by

2 <(b+2a)w < 4. (48)
Second, when ¢(k)=+7 and ¢(k+1)=tn, we must

have |¢(k+2) | < m. This condition is repre-
sented by

0<bw<2 (49)

ow

o] 1 2

Fig. 9. Various locking regions of second-orde.
with initial frequency offset.

The region R'3 in Fig. 9 may be obtained from
inequalities (48) and (49). In this region, the
loop can achieve zero steady state phase error.

As in the case of phase offset only, consider
now what happens if the conditions (48) and
(49) are not satisfied. First, when the first
condition (48) is not met (this case corresponds
to the region R'; in Fig. 9), there exist s
and '¢ss such that

B = —[2-(a+b)w]4>sS - (l-aw)(l)SS + 2mm,
(50)

where m is an integer. In this case, ¢ss is given
by

2mmn
4 -2awa- bw

In the case that (48) does not hold and thus

¢SS: (51)

0 < aw + 2bw < 2, there exists an integer
m=t1 for which |¢SS | is not zero and less than
7. Accordingly, in the region R’;, there exists
a possibility that the loop may oscillate be-
tween ¢ss and '¢ss for some initial conditions.
Second, consider the case that the second
condition (49) is not met.
ponds to the region R, in Fig. 9. In this case,
we can have ¢ss such that

This case corres-

P = [2-(atb)w] ¢ss - (1-aw)¢ss + 2mm,
(52)

where m is -1 for the same reason as discussed
in Section IV-A. Thus, P is given by

-2

v (53)

¢ss =
From (38) and (53) the difference between
the sampling clock intervals T(k) and T(k+1)

27

in the steady state is given by o Accor-

dingly, the sampling clock interval increases
at the rate of one cycle per step. Therefore,
in the region R',, the second-order loop may
be locked to a nonzero steady state phase error
for some initial conditions.

From the above discussion it is clear that
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for the loop to be locked to a zero steady
state phase error independently of initial
conditions, aw and bw must take the values
in the region R'; of Fig. 9. We now examine
how the parameters a and b are related in the
region R’;. By taking the same procedure as
to obtain (40), the steady state value of the
loop filter output c(k) may be obtained as

_ (1) +¢(0) - [(a+tb)w - 1]

SS w

(54

As discussed above, when the loop is locked
at the desired frequency w, the sampling

clock interval TSS in the steady state is _20_02

Also, note that Tss is T, - ¢ Therefore,

ss’

2n 1
Cgg must be To -5 o 271(1-6- ). Thus, from

(54) we have
#(1) =2m(w=-1)- ¢(0) * [(atb) w-11  (55)
As before, when ¢(0)=tm, | (1) | must be less
than 7. Consequently, we obtain
2 <(atb+2) w <4, (56a)
and 0<(2-a-b) w< 2. (56b)
Note that the conditions (56) include the
condition (44) as a special case of w=1. There
fore, for the loop to be locked at the desired

frequency w independently of initial condi
tions, the inequalities (48), (49) and (56) must

$lke1)

m

— 7 Pl

¢ (k1)
3
L

-7 ) = bk

AV AVAVAVAVAVAVAVATS

(b)

$lk+1)

o

bkl

PAVAYAVAVATAvAvAvS

(©

Fig. 10. Phase plane plots (top) and steady
state locking processes (bottom) of
second-order loop.

(a) Oscillation (w = 0477, a=b =
1.0472,P =-3 rad)

(b) False locking (w = 12,a=b =
0.7, Po= -3 rad)

(c) Exact locking (w= 1.1, a=b =

0.7, PO= 3 rad)
(Locking always occurs indepen-
dently of initial conditions.)

be satisfied simultaneously. In other words,
aw and bw must take the values in the region
R'; in Fig. 9 and also satisfy (56). Other-
wise, the loop may be false-locked at a fre-
quency other than the desired frequency
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w for some initial conditions.

Various simulation results for phase plane
plots and steady state locking process are
shown in Fig. 10. Fig. 10 (a) represents the
case when (48) is not satisfied and so oscilla-
tion occurs. Fig. 10 (b) represents the case
when (48) and (49) are satisfied, but not (56)
and thus false lock occurs. Fig. 10 (c) depicts
the case when (48), (49) and (56) are all met
and tnus exact locking occurs always indepen-
dently of initial conditions.

Finally, let us determine the locking range
of the second-order loop. This may be ob-
tained from the inequalities considered above.
From (48), (49) and (56), it can be shown
that the desired locking range is

2 2
max- [0 > e ) S9<

4 2 4 2
b+2a’ b ’ a+b+2’ 2-a-b

min. [
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V. Conclusions

We have studied a new type of DPLL called
the modified digital Costas loop. The main
feature of the loop is that the characteristic
of its phase error detector is linear. This linear
characteristic results from the use a tan™'(+)
function in the loop. As a result of this linear
property, the DPLL can be characterized by a
And the
sampling clock interval is controlled by phase

mod-2nm linear difference equation.

error itself.

In the noiseless case, the first- and second-
order loops have been analyzed by the phase
plane technique.
have been obtained in closed forms.

Locking ranges of the loops
It has
been found that oscillation and false lock occur
depending on some initial conditions. Condi-
tions for these phenomena have been obtained,
and confirmed by computer simulation.
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