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STANDARD HALFRINGS AND STANDARD IDEALS

By Louis Dale

i. Introeduction

The concept of a ring is derived from, and is a generalization of the algebraic
properties of the set of integers. A semiring is a generalization of the algebraic
nroperties of the set of nonnegative integers. Thus the concept of a semiring is
much more general than that of a ring. Consequently, the class of semirings
may be subdivided into a number of subclasses. One of the more interesting
subclasses of semirings is the class of halfrings. Halfrings are those semirings
capable of being embadded in a ring. Thus it is possible to move freely from
the study of halfrings to the study of rings, and conversely. In this papzr, we
will look at the structurc of halfrings, identify certain types of halfrings, and
determine scme of those properties of rings that are inherited by halfrings. We
will also leokt at the relation between ideals in the halfring and ideals in the
corresponding ring.

2. The classification of halfrings

A semiring is a nonempty set S together with two binary operaticns called
addition (+) and multiplication (-) such that (S, +) is an abelian semigroup
with a zero, (S,+) is a semigroup, and multiplication is distributive over addition
from both the left and the right. We call a semiring S commutative it ab=ba
for all ¢,bES. A semiring with the cancellation property relative to addition
will be called a hal fring.

Let H be a halfring and H=HXH. In H, define (b, £)=(", ) if and only
if A% ="+F Since H has the cancellation property, it is an easy matter to
show that equality in # is an eguivalence relation and consequently, partiticns
H. If we define addition and multiplication in F by

Ch, )= (K, B)=(h+F, -k and

(h, Y, E)=(hl +RE, hE +kR")
then it can be shown that addition and multiplication are well defined and Z is
a ring with respect to these operations. Alse, the mapping ¢: H—H given by
hy=(h, 0) is an injection and it follows that H is embedded in H. If we identify
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the ordered pair (k, k) with k—2%, then H=1[{k—Fk|h k€H] will be called the
ring of differences of H. It is clear that I is the smallest ring containing H,
i.e., the intersection of all rings containing H. We summarize this information
in the following theorem.

THEOREM 2.1 (Embedding). Any kalfring H cen be ensbedded in a ring. The
smallest such ring containing H is the ring H.

We now want to identify certain types of halfring. To do this we will use
the following definition.

DEFINITION 2.2, A semiring S is called a strict semiving if ¢,0ES and a—+&
=0 imply e=b=0. A sirict halfring is defined similarly.

The set of nonnegative integers Z ' is a strict haliring as well as the set
M (Z *Y of all #x#n matrices over Z 7.

The strictness property enables us to characterize and investigate the structure
of halfrings. Since every halfring contains a zero element 0 and {0} is a ring
with respect to the operaticns in H, it follows that every halfring contains a
ring. When we say that a halfring H contains a ring £, we will mean RCH
and R is a ring with respect to the operations in H. The following theorem
gives us a starting point.

THEOREM 2.3. Let H be a halfring and R @ ring such that RCH. Then H
is strict if and only if R=1{0}.

PROOF. Suppose H is strict, RCH and e¢ER. Since X is a ring, —a&R and
a+(—a)=0. From H being strict, it follows that ¢=—¢=0. Consequently, =
{0}. On the other hand, suppose for any ring RCH it follows that R= {0} and
suppose further that there are elements @, b€H with ¢+b=0. Since a,bEHCH,
it follows that b=-—a&H. Consequently, R'=<{e, —a), the set of all sums and
products of the elements ¢ and —e@, is a ring contained in H. To see this, note
that R’ consists of all sums of clements of the form e’ where meEZ, Z the set

o
of integers, and #£=>1. Thus the elements of R’ are of the form 3 m,e’ where
1

m,EZ. 1t is clear that R’ is closed under addition. Since ma*Y(na)=mna®™", it
follows that R’ is closed under multiplication. Now —a¢&R’ assures that the
inverse of each element of R’ is in R’. The distributive and associative properties
are inherited from H. Consequently, R’ is a ring contained in . Therefore R'=

»
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{0} and it follows that ¢=0. Thus ¢=0=0 and H is strict.

Let H be a halfring, H its ring of differences, and H*=((0, b)|o€H] =
{—blbeH]. Either HNH*={0} or HNH*#{0] and we have the following
corollary.

COROLLARY 2.4. A halfring H is strict if and only if HO\H*={0}.

PROOF. If HNH*## (0}, then H contains a ring. For if x&€dNH¥*, then z,
—x&H and it follows from the proof of Theorem 2.3 that j=<{x, —x) is a ring
in H. Therefore Theorem 2.3 assures that H is strict if and only if J= {0} and
it follows that H is strict if and only if HNH*= (0}.

With this information we can now classify a halfring according to whether or
not it contains a nonzero ring. A halfring H will be called a standard halfring
if H is strict. A halfring H will be called semistandard if H is not standard.
It is possible to refine these two classifications even further. Note that if H is a
halfring we always have HUH*CH. It may bs that FUH*=H or HUH*#H.
We will call H a tvpel halfring if H=HUH* and a fypell halfring if H#
HUHA*. Consequenily, our two major classifications of halfrings are standard and
semistandard. Each of these ciassifications are refined to give subclasses of type
I and typell. We now give examples of each of these classes.

EXAMPLES 2.5. (i) The set H=Z" of all nonnegative integers with the usual
operzations is a standard halfring of typeI. It is clear that H is strict. For H*
is the set of all nonpositive integers, and it is clear that ANH*=[0} and H=
HUH*,

Recall that an erdered 7ing is a ring R together with a subset P of R such
that

(1) 0&P,
(2) if a€R then either e€P, ¢=0, or —aEP,

and (3) if ¢, &P then a+b and ebEP.

If we put (&P and let P*={—gla€P}, then P isa standard haliring of wype].
For clearly, R=P=PUP¥ and PNP*={0}. Consequently, any ordered ring
contains a standard halfring of typel.

(ii) The set K=M,(Z 7Y of all 2x2 matrices over Z * is a standard halfring
of type 1. It is rather obvious that X is strict. Now K* is set of 22 matrices
with nonpositive entries and ?i_’:ME(Z). Also we have KN K*=({0] where 0 13
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the zero matrix. Since there are matrices in K with bhoth negative and positive
entries, it follows that K #=KUK*.

(i) The set H=Z "% Z with the usual componentwise operations of addition
and multiplication is a semistandard halfring of typel. Clearly H=ZXZ,
H*=NxZ, where N is the set of all nonpositive integers, and HNH*={(0, »)
|nEZ) =7 is a nonzero ring contained in K. Also, it is easy to see that H=
HUH*,

(iv) The set H=Z " %xZ % Z with the usual componentwise operations of
addition and multiplication is a semistandard halfring of typell. Now H=ZX
ZxXZ, H¥* =N xXNxZ, where N is the set of all nonpositive integers, and HNH*
={(0,0,n)| nEZ)=Z is a nonzero ring contained in H. It can be ecasily shown
that F=HUH*.

A few remarks about standard halfrings. If H is a standard halfring of type
I, then H is an ordered ring with the set P being H— {0}. If H and K are
standard halfrings of type [, then HXK is a standard halfring of typell. A
standard halfring H of type] is nice to work with since HNH*= {0} and H=
HUHA*. For the remainder of this paper we will assume that standard halfring
will mean standard halfring of typel.

3. Ideals in a standard halfring

If H is a commutative halfring with an identity, then it follows that H is a
commutative ring with an identity. In what follows we will assume that all
halfrings are commutative with an identity.

DEFINITION 3.1. A nonempty subset I of a halfring # is called an ideal of
H if for a, b€l and heH

@ a+& and ab&l,
and (ii) he and ahel,

Now there is a natural relation between ideals in a halfring H and ideals in the
ring #. If J is an ideal in A then it is straight forward to show that JNH is
an ideal in H. On the other hand, if A is an ideal in H, we want to relate A
to some ideal in H. Since A is a subset of # the ideal A= (I|7 is an ideal in
H and ACI] is an ideal containing A. Now let A= la—bla, bSA).

THEOREM 3.2. If A is an ideal in H, then A is an ideal in F.

PROOF. Suppose %, 9€4 and a€H. Now z=a-0, y=c—d for some a, b, ¢, d
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€A, and it follows that
x—y=(@-b)-(c—-d)=(a+d)—(b+c)EA and
wy=(a-b)(c—d)=(ac+bd)— (bc+ad)EA.

Also a=p—q for some p, ¢EH and it follows that
ax=(p—q)(a—b)=(pa+gb) - (qa+pb)EA.

This is clear since A is an ideal in H. Thus 4 is an ideal in H. .

Since ACA it follows that A’CA. But any ideal containing 4 must contain A.
Thus ACA’ and it follows that A=A’. Therefore we can associate the ideal
ACH with the ideal ACH. Now it is not generally true that if 4 is an ideal in
H, then A=ANH. To secec this, let =Z" and A=10, 6, 8, 10, -}. Now A=
(23, the ideal in Z generated by 2, and ANH=ANZ =10, 2, 4, 6, -} #A. Thus
it may happen that 4 and B are ideals in H with A=B but A#B.

DEFINITION 3.3. An ideal A in a halfring H is called a stendard ideal if
A=ANH.

We note that if H is a standard halfring and J is an ideal in #, then JNH
is a standard ideal in H. Recall from the literature that an ideal I in a semiring
S is called a k-ideal (subtractive ideal) if a, a+b&I and bES imply &1, In a
halfring, the notions of standard ideal and %-ideal are equivalent.

THEOREM 3.4, Lel H be a standard halfring and A an ideal in H. Then A
is a standard ideal if and only if A is a k-ideal.

PROOF. If A is a standard ideal and @, ¢+80EA with 6&H, then b=(a+b)—
a€A. Consequently, dEANH=A and it follows that A is a k-ideal. Conversely,
supposc that A is a k-ideal in H. Clearly, ACANH. Assume xSANH. Then
xrE4 and *&H. Now xEA4 gives x=a—0 where a,6EA. Thus a=b-+x and 4
being a k-ideal assures that xEA. Consequently, ANHCA and it follows that
A=ANH and A is a standard ideal,

If A is a standard ideal in a standard halfring H, then from A=ANH it
follows that A—ACH—-H. We will now look at some of the properties of A
carried over to A and some of the properties of A inherited from A.

THEOREM 3.5. Let H be a standard halfring and P a standard ideal in H.
Then P is prime if and only if P is prime in H.

PROOF. Suppose P is prime in H and bEP. Since H is standard, either
ab&P or abEP—P. If abEP the theorem follows easily. If ebEP—PCH-H,
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then —ab&H. Thus —aebSPNE=P. Hence either —aEP or &P and it
follows that —(—a)=aEP or 3=PCP. Consequently, P is a prime ideal in H.
Conversely, suppose that P is a prime ideal and ¢, d €H such that ed EP=PNH.
Then ¢EP or dEP and it follows that cEPNH=P or d&PNH=P. Consequen-
tly, P is a prime ideal in H.

THEOREM 3.6. Let H be a standard halfring and M a standard ideal in
H. Then M is maximal with respect to standard idcals if and only if M is
mazimal in H.

PROOF. Suppose M is maximal in Z and N is a standard ideal such that
MCNCH. Then MCNCE and it follows that M=N or N=H. If M=N,
then M=MNH=NNH=N. If N=F, then N=NNHE=HNH=H. Consequently,
M is maximal with respect to standard ideals. Now suppose that Q is maximal
with respect to standard ideals in A and J is an ideal in F such that QCJCH.
Then J’=JNH is a standard ideal in H and QCJ'CE. Since Q@ is maximal
with respect to standard ideals, we have j'=Q or J’=H. Hence Q=J'=J or
J'=H=] and it follows that Q is maximal in H.

Standard is necessary in the above theorem. For it can happen that M is
maximal with respect to standard ideals and there exists an ideal 7 such that 7
is not a standard ideal but MCICH is a proper inclusion. When this happens it
follows that 7=H.

It is straight forward to show that any principal ideal in & is a standard ideal.
Also, if P is a principal ideal in H then PNH is a principal ideal in H. Thus,
it can be shown that if P is a standard ideal in H, then P is principal if and
only if P is principal. We now know that the prime, maximal, and principal
properties of ideals in a standard halfring are carried over to related ideals in
the ring of differences. Conversely, these same properties of ideals in the ring
of differences are inherited by standard ideals in the halfring. Further, if H is
principal ideal ring, it is not true in general that H is a principal ideal halfring.
Also if H is a local ring, it is not true in general that & is a local ring.

4. Homomorphisms of halfrings
In this section we will consider homomorphisms of standard halfrings.

THEOREM 4.1, Let f: H—K be a homomorphism of the halfrings H and K.
Then f can be extended to a homomorphism f : H—K of the rings H and K.
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PRCOP. Let £: H—K be a homomorphism. Now any *&H has the form z=g—5
where @, 8€H. Define 7 : H—K by f(x)=7(a)— (5. Since f(a), fBEK, it is
clear that f(x)EX. Now suppose x=¢—b and x=c—d. Then e¢+d=b+¢ and f
being a homomorphism assures that fla)+f(d)=s(8)+f(c) and consequently
Jf@) =) =1(c)—f(d). Thus F is well defined. Now if y=a"—¥’, then

F@E+»=Flle-b)+(@-5]
=F [(a+a")— (&+5)]
=fla+a) - fb+0")
=f@)+f(@) - {f(B)+ ("))
= {f(@)— SO} + (@) - !
=f@+f
and
FGy)=Flla—b)(c’—0)]
=f(aa’—Eb") — (ab’ +a’b)]
=f(aa’+03")— f(eb"+a'd)
= [fla) fla")=FB )] - [f@f@)+ (@) f(®)]
= [fla) - f(@] [f (&) - (7]
=f(x)f (3).
Consequently, 7 is a ring homomorphism. It is clear that f restricted to H is f.
Thus f is an extension of f.

From Theorem 4.1 we can derive a couple of other results, If f:H—K isa
homomerphism, then it is straishtforward to show that F(E)=FfF). Also if f
is surjective and J is a standard ideal in K, then f #1( J) is a standard ideal in
H. It is also valid that the homomorphic image of a standard halfring is
standard.

In all examples of standard halirings of typell, I have found that these were
the sum of a halfring and a ring. I have not been able to prove this. I would
like to clese this paper with the following question. Is it true that H iz a stand-
ard halfring of typell if and enly if H=H'+R where H’ is a standard halfring
of type] and R is a ring?
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