Kyungpook Math. J. Volume 21, Number 2 December, 1981

A NOTE ON PSEUDOCOMPACT GROUPS

By S. Janakiraman

Introduction

In this note, we characterize pseudocompact groups, by demanding that real valued continuous functions preserve convergent nets in a uniform manner as below.

THEOREM 2.1. Let (G, τ) be a totally bounded topological group. Then (G, τ) is pseudocompact if and only if whenever a net $\{x_{\alpha}\}$ converges to x, and f is a real valued continuous function on G and $\varepsilon > 0$, there exists a d such that $|f(ax_{\alpha}) - f(ax)| < \varepsilon$ for all $\alpha \ge d$ (independent of a) and for all $a \in G$.

Incidentally this suggests a characterization of equi-continuity of a family of functions, using nets, which also we furnish.

Section 1. In this section, we collect preliminaries and characterize an equicontinuous family, using nets.

DEFINITION 1.1. Let (G, τ) be a topological group. (G, τ) is said to be *pseudocompact* if every real valued continuous function on G is bounded.

DEFINITION 1.2. Let (G, τ) be a topological group. (G, τ) is said to be *totally* bounded, if for every neighbourhood V of e, we can find a finite set $x_1, \dots, x_n \in G$, such that $G = \bigcup_{i=1}^n x_i V$.

DEFINITION 1.3. Let (G, τ) be a topological group. Let $f: (G, \tau) \to R$ be continuous, f is said to be *uniformly continuous*, if for every $\theta > 0$, there exists a neighbourhood V of e such that $|f(x) - f(y)| < \theta$ whenever $x^{-1}y \in V$.

DEFINITION 1.4. Let (X, τ) be a topological space. A family \mathscr{F} of real valued continuous functions on X is said to be *equicontinuous* at $x_0 \in X$, if given $\varepsilon > 0$, there exists a neighbourhood V of x_0 such that $|f(x) - f(x_0)| < \varepsilon$ whenever $x \in V$ and for all $f \in \mathscr{F}$.

A family of real valued continuous functions on a topological space (X, τ) is said to be *equicontinuous* on X if it is equicontinuous at all $x \in X$.

S. Janakiraman

THEOREM 1.5. Let (X, τ) be a topological space. Let \mathscr{F} be a family of real valued continuous functions on X. Then the following are equivalent:

(i) \mathcal{F} is equicontinuous on (X, τ) .

(ii) Whenever a net $\{x_{\alpha}\}$ converges to x, and $\varepsilon > 0$, there exists a d such that $|f(x_{\alpha}) - f(x)| < \varepsilon$ for all $\alpha \ge d$ (independent of f) and for all $f \in \mathscr{F}$.

PROOF. (i) \Longrightarrow (ii): Since \mathscr{F} is equicontinuous at x, by 1.4, there exists a neighbourhood V of x such that $|f(x) - f(y)| < \varepsilon$ for all $y \in V$ and for all $f \in \mathscr{F}$. Since $\{x_{\alpha}\}$ converges to x, there is a $d \in D$ such that $x_{\alpha} \in V$ for all $\alpha \ge d$. Hence (ii) follows easily.

To show (ii) \Longrightarrow (i), suppose (i) does not hold. Then there is at least one $x_0 \in X$, at which \mathscr{F} is not equicontinuous. That is we can find an $\varepsilon > 0$ such that no neighbourhood of x_0 will satisfy the condition of equicontinuity. So let V be a neighbourhood of x_0 . Then there exists a function $f_V \in \mathscr{F}$ and an element x_V of V such that $|f_V(x_V) - f_V(x_0)| \ge \varepsilon$. Now consider the directed set D of neighbourhoods of x_0 directed by $U \ge V$ if $U \subset V$. We have a net $V \to x_V$ for $V \in D$. This net easily converges to x_0 . For this net, ε and \mathscr{F} , the hypothesis of (ii) is violated. This contradiction yields the result.

Section 2. In this section we prove the main result.

THEOREM 2.1. Let (G, τ) be a totally bounded topological group. Then (G, τ) is pseudocompact if and only if whenever a net $\{x_{\alpha}\}$ converges to x, and f is a real valued continuous function on G and $\varepsilon > 0$, there exists a d, such that $|f(ax_{\alpha}) - f(ax)| < \varepsilon$ for all $\alpha \ge d$ (independent of a) and for all $a \in G$.

PROOF. Let (G, τ) be pseudocompact. Let a net $\{x_{\alpha}\}$ converge to x, and f be a real valued continuous function on G and $\varepsilon > 0$. Then f is (left) uniformly continuous by Theorem 1.5 of [1]. Hence there exists a symmetric neighbourhood V of e such that $|f(x) - f(y)| < \varepsilon$ whenever $x^{-1}y \in V$. Since $\{x_{\alpha}\}$ converges to x, $\{x^{-1}x_{\alpha}\}$ converges to e. Hence there is a d such that $x^{-1}x_{\alpha} \in V$ for all $\alpha \ge d$. Now $(ax)^{-1}(ax_{\alpha}) = x^{-1}x_{\alpha} \in V$ for all $\alpha \ge d$ (independent of a). Thus it follows that $|f(ax) - f(ax_{\alpha})| < \varepsilon$ for all $\alpha \ge d$ independent of a and for all $a \in G$.

Let now (G, τ) satisfy the condition in Theorem 2.1. Let f be any real valued continuous function on G. We assert that f is (left) uniformly continuous. Let $\varepsilon > 0$ be given. Consider now the family $\mathscr{F} = \{f_a | a \in G\}$ where f_a is a function defined from G to R by $f_a(x) = f(ax)$. The condition in Theorem 2.1 applied to

268

f, any net $\{x_{\alpha}\}$ converging to x and $\varepsilon > 0$ implies that \mathscr{F} satisfies the condition (ii) in Theorem 1.4. Hence by Theorem 1.4 there exists a neighbourhood V of e such that $|f_a(x) - f_a(e)| < \varepsilon$ for all $x \in V$ and all $a \in G$. Let now $x^{-1}y \in V$. Then $|f_x(x^{-1}) - f_x(e)| < \varepsilon$. This shows that $|f(y) - f(x)| < \varepsilon$ whenever $x^{-1}y \in V$. Hence f is (left) uniformly continuous. But Theorem 4.1 ([1]) asserts that if G is totally bounded and each real valued continuous function from G to R is left uniformly continuous then G is pseudocompact. Hence the theorem follows.

> Reader in Math. Madurai University Madurai-21, Tamilnadu India

REFERENCE

 Comfort and Ross, Pseudocompactness and uniform continuity in topological groups, Pacific Jour. Math. Vol.16, No.3, 1866.