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SOME BRIEF COMMENTS CONCERNING GENERALIZED ZEROS
IN SEMIGROUPS

By Melvyn W. Jeter

1. Introduction

An element z of a semigroup S is called a generalized zevo, g-zero, if and
only if for all ¢, &S it follows that aezb=bza. Clearly, any zero of S isa
g-zero. In a commutative semigroup, every element is a g-zero. If a semigroup
has an identity that is also a g-zero, then the semigroup is commutative. In
particular, a group is commutative if and only if every element in the group
is a g-zero.

2. Some basic properties

With the exception of the above definition the definitions used will be standard
and can be found in [1], [2] or [3]. The following result justifies the term
generalized zero.

PROPOSITION 1. If a semigroup S has a unique g-zero z, then z is a zero of S.

PROOF. Let #€S and consider @z. For any other ¢, d€S it follows that
c(az)d=(ca)zd=dz(ca)=(dzc)a=(czd)a=cz(da) =(da)zc=d(az)c.
Hence, @z is a g-zero of S. Likewise, za is a g-zero of S. Since S has a unique
g-zero, it follows that z is a zero of S.

COROLLARY 1. For any semigroup S, let K(S) denote the collection of all
gzeros of S. Then K(S) is empty or is a two-sided ideal of S.

As expected from the definition and as mentioned earlier, the existence of a
g-zero in a semigroup very often has some important applications concerning
commutativity.

PROPOSITION 2. Let S be a semigroup and lel T be the subset of elements of
K(S) that divide every element of S on the right. Then the elements of T divide
the elements of S on the left. In fact either T=¢ or T is a group.

PRCOF. Let z&T and «=S. Then there exists b,¢,d&ES such that e=baz,
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b=¢z and e=dz. Thus,

a=bz=czz=dzzz=adzz=z2c2=2zb.
Moreover, when T3¢, any element of K(S) that divides all the other elements
of K(S) on the right must also divide all the elements of S on the right. The
proof follows from Corollary 1 since the set of elements of XK(S) that are hoth
right and left divisors of all elements of K(S) is either empty or a group.

COROLLARY 2. If a semigroup S has a g-zero, z, that divides every element
on the right, then the semigroup is commulative.

Clearly any idempotent g-zero of S commutes with every element of S, Also,
if any g-zero of S is regular, then S contains an idempotent g-zero. The next
result concerns idempotent g-zeros in a rectangular semigroup [5].

PROPOSITION 3. Let S be a rectangular semigroup with an idempotent g-zero.
Then S is commulative.

PROOF. Let #z be the idempotent g-zero. Since S is rectangular and z is
idempotent it is known that azb=ab for every a,#&S. The result is now

immediate.

It should be noted that any nontrivial rectangular semigroup S containing
g-zeros must contain a g-zero that is not idempotent. For otherwise it is known
that if x and y are idempotent and xy=yx, then x=y. Thus, if all the g-zeros
were idempotent then by Preposition 1, S would contain a zero z. But then @b
=gzb=0 for all a, bES.

We conclude this paragraph with some comments concerning regular g-zeros.

PROPOSITION 4. Let z be a vegular g-zero in a scmigroup S. Then z has «
unigue vegular conjugaie

PROOF. Assume that x and vy are both regular conjugates of z. Then

REY=REXLY =XEZYZX =XZE=1.

Likewise, yzx=y. Hence, x=xzy=yazx=y

Thus, when all the g-zeros of a semigroup are regular, then K(S) has the
importlant property that K(S) is an inverse subsemigroup of S. In particular,

COROLLARY 3. In a regular semigronp S with g-zeros, K(8) is an iuverse

sen group.

McLean [4] has shown that all the clements of a semigroup S are mutually
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regularly coniugate if and cnly if @, =S and b always implies that eb2ba.
Thus, any semigrcup in which all the elements are mutually regularly conjugate
and which contains a g-zero z can contain only one element. This feliows since
for all ¢, &S it follows easily that eb=aezb=0bza=0e. This leads to the following
proposition.

PROPOSITION 5. Let S be ¢ semigroud containing g-zeros. If all the clements
of K(S) are mutually regularly conjugate, then S coniains a zero.

PROOF. The proof follows from the above remarks and Proposition 1.

3. Simple and (-simple semigroups with g-zeres

Since a semigroup S without a zero is simple when it contains no proper two-
sided ideals, it follows from Corollary 1 that a simple semigroup S with g-zeros
is a semigroup without a zero for which K(S)=S. Also, a semigroup 5 with a
zero, 0, i3 O-simple provided that SE#{O} and the only two-sided ideals arc (0}

and S. Thus, for a O-simple semigroup S with g-zeros it follows that ecither
K(S)=1{0} or £(§)=S. When K(S)=S, S has a special structure.

PROPOSITION 6. Any O-simple semigroup S the! conlains a nonzero g-zero is
commutative.

PRCOF. Since S is 0-simple it follows that $=S5zS for every z&S [2, p. 58].
In particular let zEK(S)\{0). Let x,yES. Then there exists a, b, ¢, dES such
that x=e¢zd and y=czd. Thus, using Corollary 1 several times gives

xy=(azb)(czd) =a(zbcz)d =d(zbcz)a=(dzb)(cza) =(bzd)cza
=(b(zd)c)za=(c(zd)b)za=(czd){bza)=yx,
i.e., S is commutative.

For simple semigroups with g-zeros we have the following.

PROPOSITION 7. Any simble semigroup S that contains a g-zero is a commit-
tative group.

PROOF. As in Proposition 6, S is commutative. Hence, any left or right ideal
is a two-sided ideal. Since S is simple it follows that S does not contain any
proper left or right ideals. Therefore, it follows immediately that S is a group.

Finally a similar result holds for a semigroup S without a zero if we weaken
the requirement that S be simple to the requirement that S not contain any
proper left (or right) ideals.
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PROPOSITION 8. Any semigroup S that does not conlain any proper left ideals
and that does coniain a g-zero z iz a commulalive group.

PROOF. Since Sz is a left ideal it follows that $=8Sz, i.e., z divides every
element of S on the right. From Corollary 2 it follows that § is commutative.
Thus any right ideal is also a left ideal. Since S does not contain any proper
left ideals, it does not contain any proper right ideals. It follows that S is a
group.

The author would like to express his thanks to D.T. Dawson for introduction
him to semigroups.
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