BOUNDARY VALUE PROBLEMS FOR LINEAR OPERATORS

By Sung J. Lee

1. Introduction

Let H and K be Hilbert spaces, and let $H_{0}{ }^{\prime} \subset H^{\prime}$ be closed linear submanifolds of H. Let P be the orthogonal projection from H onto $H_{0}{ }^{\prime}$, and let C be a bounded linear operator from H into K such that $C C^{*}=I$, the identity, on K. Let $g \in K$ and $z \in H$ be given. Consider the problem of finding $u \in H^{\prime}$ such that

$$
\text { (BVP) } C u=g,(P-I) u=z
$$

According to J. W. Neuberger [5], this problem has a direct application to a wide class of ordinary or partial functional differential equations. He gave in [5] several sufficient conditions for (BVP) to have a solution or a unique solution in the special case when

$$
\begin{equation*}
\left(\text { Range } C^{*}\right) \cap\left(H \ominus H_{0}^{\prime}\right)=\{0\} . \tag{1.1}
\end{equation*}
$$

In the case when a certain iteration converges and (1.1) holds, he also showed how to find explicitly a solution of the problem.

While his method is constructive, the assumption (1.1) is to too restrictive. Therefore it is the purpose of this note to consider a more wide (and natural) class of (BVP) which contains (1.1) as a special case. While our method is nonconstructive, our method is very elementary and makes use of adjoints only. The present note grew out with a conversation with J.W. Neuberger who suggested that [5] and [3] might have a connection. But it turned out that there is no direct one because the condition $(P-I) u=z$ is not a boundary condition in the sense of [3].

2. Results

Define two operators T_{1} and C_{0} by

$$
\begin{aligned}
& T_{1} u=\{C u, \quad(P-I) u\}, u \in \text { Domain } T_{1} \equiv H^{\prime}, \\
& C_{0} u=C u, u \in \text { Domain } C_{0} \equiv H_{0}^{\prime} .
\end{aligned}
$$

Thus $G\left(T_{1}\right) \subset H \oplus(K \oplus H), G\left(C_{0}\right) \subset H \oplus K$, where $G\left(T_{1}\right)$ denotes the graph of T_{1}.
LEMMA 1. (I) The following (I-1)-(I -3) are equivalent:
(I-1) T_{1} has a closed range in $K \oplus H$.
(I -2) (Range $\left.C^{*}\right)+\left(H \ominus H_{0}{ }^{\prime}\right)$ is closed in H, where + denotes an algebraic sum.
(I-3) C_{0} has a closed range in K.
(II) $\quad\left(\operatorname{Null}\left(G\left(T_{1}\right)\right)^{*}\right)^{\perp}=\left\{\{u, v\} \in K \oplus H \mid v \in H^{\prime} \ominus H_{0}^{\prime}, \quad C^{*} u+v \in\left(\left(\right.\right.\right.$ Range $\left.C^{*}\right) \cap$ $\left.\left(H \ominus H_{0}{ }^{\prime}\right)\right)^{\perp}$, where the adjoint $\left(G\left(T_{1}\right)\right)^{*}$ (see [1] or [2]) of $G\left(T_{1}\right)$ is taken in $(K \oplus H) \oplus H$.
(III) $\quad($ RangeC* $) \cap\left(H \ominus H_{0}^{\prime}\right)=\{0\}$ if, and only if $\operatorname{Null}\left(P C^{*}\right)=\{0\}$.
(IV) The following (IT-1)-(IV-3) are equivalent:
($\mathrm{B}-1$) The solution of (BVP), if exists, is unique.
(IV-2) (Range $\left.C^{*}\right)+\left(H \ominus H_{0}{ }^{\prime}\right)$ is dense in H.
(IV-3) C_{0} is one-to-one.
PROOF. We can compute easily that
(2.1) $\left(G\left(T_{1}\right)\right)^{*}=\left\{\{\{x, y\}, v\} \in(K \oplus H) \oplus H \mid C^{*} x+(P-I) y-v \in H \ominus H^{\prime}\right\}$,

$$
\begin{equation*}
\left(G\left(C_{0}\right)\right)^{*}=\left\{\{x, y\} \in K \ominus H \mid C^{*} x-y \in H \ominus H_{0}^{\prime}\right\}, \tag{2.2}
\end{equation*}
$$

where the second adjoint is taken in $K \oplus H$.
It follows that
(2.3) $\operatorname{Null}\left(G\left(T_{1}\right)\right)^{*}=\left\{\left\{x, y_{1}+y_{2}+y_{3}\right\} \in K \oplus H \mid y_{1} \in H_{0}^{\prime}, y_{2} \in H^{\prime} \ominus H_{0}^{\prime}\right.$, $y_{3} \in H \ominus H^{\prime}$ such that $\left.C^{*} x-y_{2} \in H \ominus H^{\prime}\right\}$,

$$
\begin{align*}
& \operatorname{Range}\left(G\left(T_{1}\right)\right)^{*}=\operatorname{Range}\left(G\left(C_{0}\right)\right)^{*} \tag{2.4}\\
&=\left(\operatorname{Range} \mathrm{C}^{*}\right)+\left(H \ominus H_{0}^{\prime}\right), \\
& \operatorname{Null}\left(G\left(C_{0}\right)\right)^{*}=\left\{x \in K \mid C^{*} x \in H \ominus H_{0}^{\prime}\right\} \tag{2.5}
\end{align*}
$$

Now, T_{1} has a closed range if, and only if $\left(G\left(T_{1}\right)\right)^{*}$ has a closed range (Theorem 2.3, [1]).
Thus (I) is immediate by (2.4).
(II) $\{u, v\} \in\left(\operatorname{Null}\left(G\left(T_{1}\right)\right)^{*}\right)^{\perp}$ if, and only if $0=(u, x)+\left(v, y_{1}+y_{2}+y_{3}\right)$
for all $\left\{x, y_{1}+y_{2}+y_{3}\right\} \in K \oplus H$ satisfying the conditions in the right of (2.3). Here (,) denotes the inner product in H or K. Since C^{*} is an isometry into H, it follows that

$$
0=\left(C^{*} u, y\right)+(v, y)
$$

for all $y \in\left(\right.$ Range $\left.C^{*}\right) \cap\left(H \ominus H_{0}{ }^{\prime}\right)$.
Thus $\{u, v\}$ belongs to the set in the right of (II).
(III) This is clear as C^{*} is one-to-one.
(IV) Clearly ($\mathrm{V}-1$) holds if, and only if

$$
\{0\}=\operatorname{Null} T_{1}=\left(\operatorname{Range}\left(G\left(T_{1}\right)\right)^{*}\right)^{\perp}
$$

Using (2.4), this is equivalent to ($\overline{-}-2$) and ($\overline{-}-3$). This completes the proof.
THEOREM 2. (I) If (BVP) has a solution, then

$$
z \in H^{\prime} \ominus H_{0}^{\prime},
$$

$$
C^{*} g+z \in\left(\left(\text { Range } C^{*}\right) \cap\left(H \ominus H_{0}^{\prime}\right)\right)^{\perp}
$$

(II) If $C\left(H_{0}{ }^{\prime}\right)$ is closed in K, then the converse of (I) holds.
(III) Assume that $C\left(H_{0}^{\prime}\right)$ is closed. Then (BVP) has a unique solution if, and only if

$$
\begin{gathered}
z \in H^{\prime} \ominus H_{0}{ }^{\prime} \\
C^{*} g+z \in\left(\left(\text { Range } C^{*}\right) \cap\left(H \ominus H_{0}{ }^{\prime}\right)\right)^{\perp},
\end{gathered}
$$

and C_{0} is one-to-one.
PROOF. (I) If (BVP) has a solution in H^{\prime}, then

$$
\{g, z\} \in\left(\text { Range } T_{1}\right)^{c}=\left(\operatorname{Null}\left(G\left(T_{1}\right)\right)^{*}\right)^{\perp}
$$

Thus the result follows from (II) Lemma 1.
(II) By (I) Lemma 1, Range T_{1} is closed. Thus by (II) Lemma 1,

$$
\{g, z\} \in\left(\text { Range } T_{1}\right)^{c}=\text { Range } T_{1}
$$

(III) This is clear by the above two parts and (IV) Lemma 1. This completes the proof.

REMARK. By Theorem 2.1, [1],

$$
\left(\left(\text { Range } C^{*}\right) \cap\left(H \ominus H_{0}{ }^{\prime}\right)\right)^{\perp}=(\text { Null } C)+H_{0}{ }^{\prime} .
$$

Provided that Null $C+H_{0}{ }^{\prime}$ is closed.
COROLLARY 3 (Theorem 2, [5]). Let $g \in K, w \in H^{\prime}$. If C_{0} is one-to-one and onto K, then there exists a unique $u \in H^{\prime}$ such that

$$
C u=g, \quad P u-w=u-w .
$$

PROOF. Since $C_{0}\left(H_{0}{ }^{\prime}\right)=K$,

$$
\{0\}=\operatorname{Null}\left(G\left(C_{0}\right)\right)^{*}=\operatorname{Null}\left(P C^{*}\right) .
$$

Thus by (III) of Lemma 1,
(Range $\left.C^{*}\right) \cap\left(H \ominus H_{0}{ }^{\prime}\right)=\{0\}$.
Now apply (III) of Theorem 2.
REMARK. The closedness condition in (III) Theorem 2 can be replaced by a different condition. For example in (Theorem 3, [5]), it is proved that if (I-1) is satisfied and the limit of a certain iteration exists, then (BVP) with $z=P w-w$ has a solution in H^{\prime}.

> Department of Mathematics University of South Florida Tampa, Florida 33620 U.S.A.

REFERENCES

[1] E. A. Coddington and A. Dijksma, Adjoint subspaces in Banach spaces, with applications to ordinary differential subspaces, Annal. Mat. Pura Appl., 4(118) (1978), 1-118.
[2] S. J.Lee, Boundary conditions for linear manifolds I, J. Math. Anal. Appl., 73(2) (1980), 366-380.
[3] S. J. Lee, Index and nonhomogeneous boundary value problem for linear manifolds (to appear).
[4] J.W. Neuberger, Square integrable solutions to linear inhomogeneous systems, J. Diff. Equations, 27(1978), 144-152.
[5] J.W. Neuberger, Boundary vatue problems for linear systems, Proc. Royal Soc. Edinburg, 83A(1979), 297-302.

