Kyungpook Math. J. Volume 21, Number 2 December, 1981

ALMOST POINTWISE PERIODIC SEMIGROUPS II*

By Younki Chae

The author investigated a structure theorem of an almost pointwise periodic semigroup on an arc [1]. The purpose of this paper is to give new proofs of the following theorems:

(1) If H is a subset of a continuum semigroup S with non-empty boundary F(H) and if the closure H^* of H contains a point x in S such that $Sx \subset H^*$, then $Sp \subset H^*$ for some $p \in F(H)$ [3].

(2) Every almost pointwise periodic standard thread is a semilattice [1].

A topological semigroup is a Hausdorff space S together with a continuous function $S \times S \rightarrow S$ (whose value at (x, y) will be denoted by xy) satisfying

$$(xy)z = x(yz)$$

for all x, y, z in S [2] [6].

Throughout, a semigroup will mean a topological semigroup. Let S be a semigroup and let $A \subset S$. Then $L_0(A)$ denotes the union of all left ideals of S contained in A. If A contains no left ideal of S, then $L_0(A) = \phi$. If $L_0(A) \neq \phi$, then it is clearly the unique largest left ideal of S contained in A.

LEMMA 1. Let S be a semigroup and let $A \subset S$.

(1) If A is closed, then $L_0(A)$ is closed.

(2) If A is open and S is compact, then $L_0(A)$ is open [6].

PROOF. (1) Since $L_0(A)$ is a left ideal of S, $L_0(A)^*$ is also a left ideal of S. By definition, $L_0(A) \subset A$ and hence $L_0(A)^* \subset A^* \subset A$. Therefore $L_0(A)^* = L_0(A)$.

(2) Let $x \in L_0(A)$. Then $Sx \subset SL_0(A) \subset L_0(A)$. Since S is compact and since A is open, there is an open set U about x such that $SU \subset A$. Let $B=U \cup SU$. Then B is the ideal of S generated by U and $B \subset A$. Therefore

$$x \in U = U^{\circ} \subset B \subset J_0(A)$$

and $J_0(A)$ is open.

This work is done under the support of Korea Science Foundation (titled: A study on topological semigroups).

Younki Chae

THEOREM 2. Let S be a continuum semigroup. If H is a subset of S with nonempty boundary F(H) and if the closure H^* of H contains a point x in S such that $Sx \subset H^*$, then $Sp \subset H^*$ for some $p \in F(H)$ [3].

PROOF. Let $x \in H^*$ such that $Sx \subset H^*$. Since $H^* = H^\circ \cup F(H)$, $x \in H^\circ$ or $x \in F(H)$. If $x \in F(H)$, then we are done. Suppose $x \in H^\circ$. If $Sx \cap F(H) \neq \phi$, then there exists an element $t \in S$ such that $tx \in F(H)$. Let p = tx. Then $Sp = Stx \subset Sx \subset H^*$.

Now suppose $Sx \cap F(H) = \phi$. Then $Sx \subset H^\circ$. Since Sx is a left ideal of S, $L_0(H^\circ) \neq \phi$ and $L_0(H^\circ)$ is open by Lemma 1. If $L_0(H^\circ)^* \subset H^\circ$, by the definition of $L_0(H^\circ)$, $L_0(H^\circ)^* = L_0(H^\circ)$. Then $L_0(H^\circ)$ is a proper clopen subset of S which contradicts the fact that S is connected. Hence we have $L_0(H^\circ)^* \cap F(H) \neq \phi$. Let $p \in L_0(H^\circ)^* \cap F(H)$. Then $p \in F(H)$ and

$Sp \subset SL_0(H^\circ)^* \subset L_0(H^\circ)^* \subset H^*.$

An *arc* is a continuum with exactly two non-cutpoints. It is well known that any arc admits a total order and has one non-cutpoint as a least element and the other non-cutpoint as a greatest element [7]. It is supposed that an arc to have such a total order on it. We will denote an arc with endpoints a and b, a < b, by [a, b] and if $x, y \in [a, b]$, x < y, then $[x, y] = \{t | x \le t \le y\}$.

A standard thread is a semigroup on an arc in which the greatest element is an identity and the least element is a zero.

LEMMA 3. Suppose S = [z, u] is a standard shread. Then

(1) xS=Sx=[z,x] for all x in S.

(2) $x \leq y$ and $v \leq w$ imply $xv \leq yw$ [6].

PROOF. (1) Let H = [z, x], x < u. Then $F(H) = \{x\}$. Since $Sz = \{z\} \subset H = H^*$ and $z \in H^*$, by Theorem 2, $Sx \subset H^* = H$. Since z, $x \in Sx$ and Sx connected, $H = [z, x] \subset Sx$. Hence we have

$$Sx = xS = [z, x], \forall x \in S.$$

(2) Since $x \le y$, $x \in [z, y] = Sy$ and $xv \in Syv = [z, yv]$. Hence $xv \le yv$. Again, since $v \le w$, $v \in [z, w] = wS$ and $yv \in ywS = [z, yw]$. Hence $yv \le yw$. Therefore $xv \le yw$.

A semigroup S is termed almost pointwise periodic at $x \in S$ iff for each open set U about x, there is an integer n > 1 such that $x^n \in U$. S is said to be almost pointwise periodic iff S is almost pointwise periodic at every $x \in S$ [4] [5].

164

LEMMA 4. Let K be a compact subsemigroup of a semigroup S. Then S is not almost pointwise periodic at every point of $K-K^2$ [1] [4].

THEOREM 5. Every almost pointwise periodic standard thread is a semilattice [1].

PROOF. Let S = [z, u] be an almost pointwise periodic standard thread and let $p \in S$ with $p \neq z$, u. Suppose $p^2 \neq p$. Then $p^2 < p$ and $p \in [z, p] - [z, p^2] = [z, p] - [z, p]^2$ by Lemma 3. Then by Lemma 4, S is not almost pointwise periodic at p which is a contradiction. Hence we have $p^2 = p$. Since every standard thread is commutative, S is semilattice.

Kyungpook National University

165

REFERENCES

- [1] Chae, Y., Almost pointwise periodic semigroups, Kyungpook Math. J. 20(1980).
- [2] Wallace, A.D., The structure of topological semigroups, Bull. Amer. Math. Soc. 61(1955).
- [3] Day, J.M., Algebraic theory of machines, languages, and semigroups, Academic Press Inc., New York, 1968.
- [4] Whyburn, G.T., Analytic topology, A.M.S. Coll. Pub., Vol.28. New York, 1942.
- [5] Wallace, A.D., Problems on periodicity functions and semigroups, Mat-Fyz. Casopis 16(1966), 209-212.
- [6] Sigmon, K.N.. *Topological semigroups* (Lecture notes), University of Florida, Gainesville, 1968.
- [7] Hocking, J.G. and Young, G.S., Topology, Addison-Wesley, Massachusetts, 1961.