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STRONGLY R; SPACES

By Charles Dorsett

1. Introduction

In [8] a separation axiom between Hausdorff and Urysohn, called strongly
Hausdorff, was introduced and used to investigate the cardinality of discrete
subsets of Hausdorff spaces.

DEFINITION 1.1, A Hausdorff space (X, T) is strongly Hausdorff iff for
each infinite subset A of X, there exists a sequence (U}, of disjoint open
sets such that ANU,#¢ for all nEN.

In this paper strongly Hausdorff is generalized to strongly R;, properties of
strongly | spaces are investigated, and Tjidentification spaces are further in-
vestigated and used to extend known results for strongly Hausdorff spaces to
strongly R, spaces.

Throughout this paper N is used to denote the set of natural numbers.

2. R, strongly R, and T identification spaces

LEMMA 2.1. A Hausdorff space (X, T) is strongly Hausdorff iff for each
sequence (x,) .\ such that x,=x, iff n=m, there exists a sequeice U} -y of
disjoint open sets such that U,N {x |nEN) 7 for all mEN.

The straightforward proof is omitted.

DEFINITION 2.1. A space is (X, T) is R, iff for x, yEX such that [x] # B,
there exist disjoint open sets U and ¥ such that {z)CU and T3] CV [3].

DEFINITION 2.2. A R, space (X, T) is sirongly R, iff for each sequence
) en such that {x) =1z} iff n=m, there exists a sequence {U,), =y of
disjoint open sets such that U,,N {x,|nEN} #¢ for all mEN.

In [5] it was shown that a space is Hausdorff iff it is #; and T\, This result
can be used to obtain the following result.
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THEOREM 2.1. A space is sirongly Hausdorff iff it is strongly R, and Ty.

The example in [10], which is Hausdorff but not strongly Hausdorff, shows
that R, is weaker than strongly R;.

DEFINITION 2.3. Let (X, T) be a space and let R be the equivalence relation
on X defined by xRy iff {x]=1y]. Then the T identification space of (X, T)is
(X Q(T)), where X, is the set of equivalence classes of R and Q(T) is the
decomposition topology on X, which is T, [11].

In [7] it was shown that every subspace of a K, space is R; and that (X, T)
5 Ry ilf (X, Q(T)) is T, and in [6] it was shown that the natural map P:
(X, T)—(X., Q(T)) is continuous, closed, open, and onto, and Pil(P(O)):O
for all OET and that if (X, T) is R, then X,= {ix] |[x€X}. These results can
e used to obtain the following results.

THEOREM 2.2. Ewvery subspace of a strongly R, space is strongly R,.

DEFINITION 2.4. A subset A of (X, T) is regular-open iff A=Int A. The set
of all regular-open subsets of (X, T) forms a basis for a topology T, on X, which
is called the semiregularization of T [L].

THEOREM 2.3. If (X, T) iés e space, %= [0CX|0 is regular-open}, and
B = OCX,| T is regular-open), then &= (P(0)|0EF).

PROOF. Let AEZ. Then A=Int 4 is open and P '(P(4A))=A. Since P is
continuous and open, then P(A4)=P(Int A)CInt P(A)CInt P(4) and P—I(Int:

PA@)cint PT@P@)=Int P (P(4)=Int A=A, which implies P(4)=Int
FAEZ. Let #€F . Then &=Int &. Since P is continuous and open, then

P Ye)=P7Y(nt Z)cInt P @) =Int P"1(&) and PUnt P Y&)Cint P

P Y @)Cint P(P~H())=Int T=¢, which implies »~(¢)=Int P (&)cZ
and Z=P(P_N&)).

In [10] it was shown that if (X, T) is strongly Hausdorff, then (X, T, is
strongly Hausdorff. This result is combined with those above to obtain the follo-
wing result.

THEOREM 2.4. The jollowing are equivalent: (a) (X, T) is sirongly R, ()
(X, Q(T)) is strongly Hausdorff, and (c) (X, T)) is strongly R, and [?}T‘: ET
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or all x€X.

PROOF. (a) implies (b): Since (X, T) is strongly Ry, then (X, T) is R, and
(X, Q) is Ty where Xo=1{lx}|x€X)}. Let W”EN be a sequence in X,
such that {x,} =T{x,} iff #=m. Then there exists a sequence {U,},-, of disjoint
open sets in X such that U, N {x,|#nEN)#¢ for all mEN. Since P is open and
P_l(P(O)) O for all OET, then {P(U},oy is a sequence of disjoint open sets
in X, and PW, )N ({z,} |nEN) #¢ for all mEN.

(b) implies (¢): Since (X Q(T)) is strongly Hausdor{f, then (X, Q(T),) is
strongly Hausdorff, (X, T) is R, and X,={{¥] |x€X]}. Then for each [x] EX’O.
-{{TTQ{T)F{E! and X,— {T?c_}}-:agaﬁ’a, where &, is regular-open in X, for
all «€A. Since P_l(P(O))zo for all GET, then by Theorem 2.3 P_l(ﬁ o 15
regular-open in X for all «€4 and X~ W =P '( U 70=U P @)er, and

} C {x} ;. Since T,CT, then E_ITC’ , which |rnp}1es (e} = [x}r If &} e

is a sequence in X such that {z,};=1ix,}; iff n=m, then {z,}), oy is a se
quence in X, such that {x, 1= 2, {x,] iff n=m and there exists a sequence e ﬂew
CQUT), of disjoint sets such that U, N {{z,} [#EN}#¢ for all mEN and {P
(/) ﬂENCTs is a collection of disjoint sets such that P~ (U n ’x -nEN} #o
for all m&EN. By a similar argument, if x, yEX such that [x}T, ‘J’ir’ then
there exist disjoint sets U, VET, such that {z},CU and TET.CV.

Clearly (c) implies (a).

THEOREM 2.5. For each a€A let (X, T,) be a topological space such that
X, 0 and let S denote the product topology onﬂlé[AX o Then ((alg_._i}{ Do Q)
is homeomorphic fo (aléIA (X Do W), where W is the product topology on aIEIA
X

PROOF. For each Cn 1y, }ES(T[ X))y C H{y} H Cya’ where C,};_}h} is the
equivalence class in agAX « containing agA (7 and Cya is the equivalence class

in X, containing y,. Let f:{(Cn (5.} H (c, }ICH i, }E( lT X )0} If CH{ya}

=0 , then JIC, A = l'I C., which 1mpI;esC C for all aeEA4 and '[I {C }
‘ZEA{’:«} CIEA o a ‘7'-
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= HA{C’}' Thus f is a function. Also, f is onto. If C, C.&( H;Ya)a such
acEA = ¥ EF T e
that f(C)=S(C), then agﬂ ;) =alé[.al (€, }, which implics C, =C, for all
+ «€A and C,=C,. Thus f is 1-1. For each a€A let f,: (X, T =X,
Q(T,)) be the natural map and let P : ( I;_AX“’ SH)—(( EAX‘X)D, Q(S)) be the
o 44
natural map. Let aIEIA%aEW such that #”,€Q(T ) forall ®€A and 7 ,=(X ),
except for finitely many a€A. Then f, l(Va)zX , except for finitely many
ac:! and since f, is continuous, then fa_ 1(7 JET,, which implies gA f;l
(14
(¥ )ES. Since P is open, then f_l( I 7 =P(II fa_l(Va))EQ(S). Thus
acs4A (=T
f is continuous. Let £€Q(S). Let I (C,1EA) and let y= 11 (y,4. Then
asA a =71
yePul(ﬁ)ES and there exists gqUaES. where U €T, for all €4 and U,
acss
=X, except for finitely many a€A4, such that y& gAUaCP_I(ﬁ). Since £,
24
U p=(X,), except for finitely many a&€A and Cyaefa(Ua) eQ(T,), then f(CJ,)
= 1 d i -1 = —1 =
agA {Cya' EﬂgAfa(Urx)EW and since f (arefaf“(U“D P(agA £, (FU)N=P
(II UpCe, then TI f,UDCHE). Thus fis open.
acA ac4

In [10] it was shown that the product of nonempty topological spaces is strongly
Hausdorff iff each coordinate space is strongly Hausdorf{ and in [4] it was
shown that strongly Hausdorff is a topological property. These results can be
combined with Theorem 2.4 and Theorem 2.5 to obtain the following result.

THEOREM 2.6. The product of nonempty topological spaces is strongly R, iff
each coordinate space is sirongly R,.

In [7] it was shown that R, is a topological property. This result can be
combined with a straightforward argument to obtain the following result.

THEOREM 2.7. Strongly R, is a topological property.

DEFINITION 2.5. A space is #im-compact iff each of its points has a base of
neighborhoods with compact frontiers [L1].

THEOREM 2.8, Let (X, T) be rim-compact. Then the following are equivalent:
(a) (X, T) is regular, (b) (X, Q(T)) is Ty (©) (Xy QT)) s Urysohn, (d)
(X QTN is Ty, (&) (X,T) is Ry, () if x,yEX such that {x} # 1y}, then there
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exist disjoint open sets U and V such that x€U, yEV, and UNV=¢, and (g)
(X, T) is strongly R,

PROOF. Clearly from the results above (a) implies (b) implies (c) impiies (d)
implies (e).

(e) implies (f):Let »EX and let GET such that x&0. Then there exists a
neighborhood A of x such that ACO and Fr(A4) is compact. For each y&EFr(4),
T # [z} and there exist disjoint open sets U, and V, containing x and y, respe-
ctively. For each yEFr(4), let U - and V)r be disjoint open sets containing x and
y, respectively. Then [Vyl y&Fr(A)] is an open cover of Fr(A4) and there exists a

n s
finite subcover {Vy]_iz': 1, -+, #). Then x&EB= (DlU}.‘)ﬂ(Int(A)) €T and BCACO.

Thus (X, T) is regular. If ¢, 8EX such that [e] #70], then there exist disjoint
open sets U and V such that ¢e€U and 3V and since (X, T) is regular, there
exist open sets W and Z such that e EWCWCU and b&ZCZCV.

(f) implies (g): Let xEX and let OET such that x&0. If yEX—0, then
151 #1) and there exist disjoint open sets containing x and y, respectively, which
implies y& {x] and (2] CO. If ¢, 8EX such that Ja] =0}, then there exist dis-
joint open sets U and V such that ¢€U and #&V and @) CU and (6] CV. Thus
(X, T) is R, and X,= {1z} [x€X}. Let [a], [y} €X, such that {sJ = {y]. Then
there exist disjoint open sets U and V in X such that x&U, y&V, and UN I_’=¢.
Then P), P(V)EQ(T) such that & €PW), ) €PY) and POHNPWV)=
PUINP(V)=¢. Thus (X, Q(T)) is Urysochn, which implies (X, Q(T)) is
strongly Hausdorff and (X, T) is strongly R,.

(g) implies (a): Since (X, T) is R, then by the argument above (X, T) is
regular.

3. Semi topological properties, minimal strongly R,, and strongly R, -closed

DEFINITION 3.1, Let (X, T) be a space and let ACX. Then A is semi open
iff there exists OET such that 0CACO [9].

DEFINITION 3.2, A 1—1 function from one space onto another space is a
semihomeomorphism iff images of semi open sets are semi open and inverses of
semi open sets are semi open. A property of topological spaces preserved by
semihomeomorphisms is called a semi topological property [2].

In [3] it was shown that for a set X and a topology T on X, [T], the equi-
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valence class of topologies on X which yield the same semi open sets as T, has
a finest element, denoted by F(T), and F(T)={0—N|OET and N is nowhere
dense in (X, T)}. In [2] and [4], respectively, it was shown that Hausdorff and
strongly Hausdorff are semi topological properties. The following example shows
that this result can not be extended to R, and strongly R,.

EXAMPLE 3.1. Let T be the usual topology on N. Then (8N, W), the
Stone-Cech compactification of (N, T), is extremely disconnected and has non
isolated points [11]. Let x be a non isolated point of SN and let y&£SN. Then
S={0eW |x&0} U [OU [y} |x€0€W] is a topology on Y=5NU{y and (¥, S)
is regular, which implies (¥, S) is strongly R;,. The identity function from
(¥, S) onto (¥, F(8)) is a semihomeomorphism. Since (x] Fe= W=D =
and there do not exist disjoint elements of F(S) containing x and y, respect-
ively, then (¥, F(S)) is not R,.

Dlres)

DEFINITION 3.3. A space (X, T) with property P is called minimal P iff X
has no strictly courser P-topologies [10].

In [10] minimal strongly Hausdorff was investigated and characterized. Since

each set X with the indiscrete topology is R, and strongly R;, then (X, T) is
minimal R, or minimal strongly R, iff T is the indiscrete topology on X.

DEFINITION 3.4. A space (X, T) with property P is called P-closed iff X is
a closed subspace in every P-space in which it is embedded [10].

In [10] strongly Hausdorff-closed was investigated and characterized. The last
result investigates R, -closed and strongly R;-closed.

THEOREM 3.1. {(X, T)|(X, T) is R -closed or strongly R -closed)=g.

The proof follows by using a construction similar to that in Example 3.1 and
is omitted.
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