Kyungpook Math. J. Volume 21, Number 2 December, 1981

STRONGLY R₁ SPACES

By Charles Dorsett

1. Introduction

In [8] a separation axiom between Hausdorff and Urysohn, called strongly Hausdorff, was introduced and used to investigate the cardinality of discrete subsets of Hausdorff spaces.

DEFINITION 1.1. A Hausdorff space (X, T) is strongly Hausdorff iff for each infinite subset A of X, there exists a sequence $\{U_n\}_{n \in \mathbb{N}}$ of disjoint open sets such that $A \cap U_n \neq \phi$ for all $n \in \mathbb{N}$.

In this paper strongly Hausdorff is generalized to strongly R_1 , properties of strongly R_1 spaces are investigated, and T_0 -identification spaces are further investigated and used to extend known results for strongly Hausdorff spaces to strongly R_1 spaces.

Throughout this paper N is used to denote the set of natural numbers.

2. R_1 , strongly R_1 , and T_0 -identification spaces

LEMMA 2.1. A Hausdorff space (X, T) is strongly Hausdorff iff for each sequence $\{x_n\}_{n \in \mathbb{N}}$ such that $x_n = x_m$ iff n = m, there exists a sequence $\{U_n\}_{n \in \mathbb{N}}$ of disjoint open sets such that $U_m \cap \{x_n | n \in \mathbb{N}\} \neq \phi$ for all $m \in \mathbb{N}$.

The straightforward proof is omitted.

DEFINITION 2.1. A space is (X, T) is R_1 iff for $x, y \in X$ such that $\overline{\{x\}} \neq \overline{\{y\}}$, there exist disjoint open sets U and V such that $\overline{\{x\}} \subset U$ and $\overline{\{y\}} \subset V$ [5].

DEFINITION 2.2. A R_1 space (X, T) is strongly R_1 iff for each sequence $\{x_n\}_{n \in N}$ such that $\overline{\{x_n\}} = \overline{\{x_m\}}$ iff n=m, there exists a sequence $\{U_n\}_{n \in N}$ of disjoint open sets such that $U_m \cap \{x_n | n \in N\} \neq \phi$ for all $m \in N$.

In [5] it was shown that a space is Hausdorff iff it is R_1 and T_0 . This result can be used to obtain the following result.

Charles Dorsett

THEOREM 2.1. A space is strongly Hausdorff iff it is strongly R_1 and T_0 .

The example in [10], which is Hausdorff but not strongly Hausdorff, shows that R_1 is weaker than strongly R_1 .

DEFINITION 2.3. Let (X, T) be a space and let R be the equivalence relation on X defined by xRy iff $\overline{\{x\}} = \overline{\{y\}}$. Then the T_0 -identification space of (X, T) is $(X_0, Q(T))$, where X_0 is the set of equivalence classes of R and Q(T) is the decomposition topology on X_0 , which is T_0 [11].

In [7] it was shown that every subspace of a R_1 space is R_1 and that (X, T) is R_1 iff $(X_0, Q(T))$ is T_2 and in [6] it was shown that the natural map $P: (X,T) \rightarrow (X_0, Q(T))$ is continuous, closed, open, and onto, and $P^{-1}(P(O)) = O$ for all $O \in T$ and that if (X, T) is R_1 , then $X_0 = \{\overline{\{x\}} \mid x \in X\}$. These results can be used to obtain the following results.

THEOREM 2.2. Every subspace of a strongly R_1 space is strongly R_1 .

DEFINITION 2.4. A subset A of (X, T) is regular-open iff A=Int \overline{A} . The set of all regular-open subsets of (X, T) forms a basis for a topology T_s on X, which is called the *semiregularization* of T [1].

THEOREM 2.3. If (X, T) is a space, $\mathscr{B} = \{O \subset X | O \text{ is regular-open}\}$, and $\mathscr{B}_0 = \{\mathscr{O} \subset X_0 | \mathscr{O} \text{ is regular-open}\}$, then $\mathscr{B}_0 = \{P(O) | O \in \mathscr{B}\}$.

PROOF. Let $A \in \mathscr{G}$. Then $A = \operatorname{Int} \overline{A}$ is open and $P^{-1}(P(A)) = A$. Since P is continuous and open, then $P(A) = P(\operatorname{Int} \overline{A}) \subset \operatorname{Int} P(\overline{A}) \subset \operatorname{Int} \overline{P(A)}$ and $P^{-1}(\operatorname{Int} \overline{P(A)}) \subset \operatorname{Int} P^{-1}(\overline{P(A)}) = \operatorname{Int} P^{-1}(\overline{P(A)}) = \operatorname{Int} \overline{P(A)} \subset \operatorname{Int} P^{-1}(\overline{P(A)}) \subset \operatorname{Int} P^{-1}(\overline{P(A)}) = \operatorname{Int} \overline{P^{-1}(\mathcal{O})} = \operatorname{Int} \overline{P^{-1}(\mathcal{O})} = \operatorname{Int} P^{-1}(\overline{\mathcal{O})} \subset \operatorname{Int} P$ $(P^{-1}(\mathcal{O})) \subset \operatorname{Int} P(P^{-1}(\mathcal{O})) = \operatorname{Int} \overline{\mathcal{O}} = \mathcal{O}$, which implies $P^{-1}(\mathcal{O}) = \operatorname{Int} \overline{P^{-1}(\mathcal{O})} \in \mathcal{G}$ and $\mathcal{O} = P(P^{-1}(\mathcal{O}))$.

In [10] it was shown that if (X, T) is strongly Hausdorff, then (X, T_s) is strongly Hausdorff. This result is combined with those above to obtain the following result.

THEOREM 2.4. The following are equivalent: (a) (X, T) is strongly R_1 , (b) $(X_0, Q(T))$ is strongly Hausdorff, and (c) (X, T_s) is strongly R_1 and $\overline{[x]}_{T_s} = \overline{[x]}_T$

156

or all $x \in X$.

PROOF. (a) implies (b): Since (X, T) is strongly R_1 , then (X, T) is R_1 and $(X_0, Q(T))$ is T_2 , where $X_0 = \{\{x\} \mid x \in X\}$. Let $\overline{\{\{x_n\}\}}_{n \in N}$ be a sequence in X_0 such that $\overline{\{x_n\}} = \overline{\{x_m\}}$ iff n=m. Then there exists a sequence $\{U_n\}_{n \in N}$ of disjoint open sets in X such that $U_m \cap \{x_n \mid n \in N\} \neq \phi$ for all $m \in N$. Since P is open and $P^{-1}(P(O)) = O$ for all $O \in T$, then $\{P(U_n)\}_{n \in N}$ is a sequence of disjoint open sets in X_0 and $P(U_m) \cap \{\overline{\{x_n\}} \mid n \in N\} \neq \phi$ for all $m \in N$.

(b) implies (c): Since $(X_0, Q(T))$ is strongly Hausdorff, then $(X_0, Q(T)_s)$ is strongly Hausdorff, (X, T) is R_1 , and $X_0 = \{\overline{x}\} | x \in X\}$. Then for each $[\overline{x}] \in X_0$, $\overline{(\overline{x})}_{Q(T)_s} = \{\overline{x}\}$ and $X_0 - \{\overline{x}\} = \bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$, where \mathcal{O}_{α} is regular-open in X_0 for all $\alpha \in A$. Since $P^{-1}(P(O)) = O$ for all $O \in T$, then by Theorem 2.3 $P^{-1}(\mathcal{O}_{\alpha})$ is regular-open in X for all $\alpha \in A$ and $X - \overline{x} = P^{-1}(\bigcup_{\alpha \in A} \mathcal{O}_{\alpha}) = \bigcup_{\alpha \in A} P^{-1}(\mathcal{O}_{\alpha}) \in T_s$ and $[\overline{x}]_{T_s} \subset [\overline{x}]_T$. Since $T_s \subset T$, then $[\overline{x}]_T \subset [\overline{x}]_T$, which implies $[\overline{x}]_T = [\overline{x}]_T$. If $\{x_n\}_{n \in N}$ is a sequence in X such that $[\overline{x_n}]_{T_s} = [\overline{x_m}]_T$, iff n = m, then $\{\overline{x_n}\}_{n \in N}$ is a sequence $[U_n]_{n \in N}$ of disjoint sets such that $U_m \cap \{\overline{x_n} \mid n \in N\} \neq \phi$ for all $m \in N$ and $\{P^{-1}(U_n)\}_{n \in N} \subset T_s$ is a collection of disjoint sets such that $[\overline{x}]_T = [\overline{x}]_T$ such that $[\overline{x}]_T = [\overline{x}]_T$ such that $[\overline{x}]_T = [\overline{x}]_T$ then there exist disjoint sets $U, V \in T_s$ such that $[\overline{x}]_T \subset U$ and $[\overline{y}]_{T_s} \subset V$.

Clearly (c) implies (a).

THEOREM 2.5. For each $\alpha \in A$ let (X_{α}, T_{α}) be a topological space such that $X_{\alpha} \neq \phi$ and let S denote the product topology on $\prod_{\alpha \in A} X_{\alpha}$. Then $((\prod_{\alpha \in A} X_{\alpha})_{0}, Q(S))$ is homeomorphic to $(\prod_{\alpha \in A} (X_{\alpha})_{0}, W)$, where W is the product topology on $\prod_{\alpha \in A} (X_{\alpha})_{0}$.

PROOF. For each $C_{\prod_{\alpha \in A} \{y_{\alpha}\}} \in (\prod_{\alpha \in A} X_{\alpha})_{0}$, $C_{\prod_{\alpha \in A} \{y_{\alpha}\}} = \prod_{\alpha \in A} C_{y_{\alpha}}$, where $C_{\prod_{\alpha \in A} \{y_{\alpha}\}}$ is the equivalence class in $\prod_{\alpha \in A} X_{\alpha}$ containing $\prod_{\alpha \in A} \{y_{\alpha}\}$ and $C_{y_{\alpha}}$ is the equivalence class in X_{α} containing y_{α} . Let $f = \{(C_{\prod_{\alpha \in A} \{y_{\alpha}\}}, \prod_{\alpha \in A} \{C_{y_{\alpha}}\} | C_{\prod_{\alpha \in A} \{y_{\alpha}\}} \in (\prod_{\alpha \in A} X_{\alpha})_{0}\}$. If $C_{\prod_{\alpha \in A} \{y_{\alpha}\}}$, $C_{\prod_{\alpha \in A} \{x_{\alpha}\}}$, then $\prod_{\alpha \in A} C_{y_{\alpha}} = \prod_{\alpha \in A} C_{x_{\alpha}}$, which implies $C_{y_{\alpha}} = C_{x_{\alpha}}$ for all $\alpha \in A$ and $\prod_{\alpha \in A} \{C_{y_{\alpha}}\}$.

 $= \prod_{\alpha \in A} \{C_{x_{\alpha}}\}. \text{ Thus } f \text{ is a function. Also, } f \text{ is onto. If } C_{y}, C_{x} \in (\prod_{\alpha \in A} X_{\alpha})_{0} \text{ such that } f(C_{x}) = f(C_{y}), \text{ then } \prod_{\alpha \in A} \{C_{x_{\alpha}}\} = \prod_{\alpha \in A} \{C_{y_{\alpha}}\}, \text{ which implies } C_{x_{\alpha}} = C_{y_{\alpha}} \text{ for all } \alpha \in A \text{ and } C_{x} = C_{y}. \text{ Thus } f \text{ is } 1-1. \text{ For each } \alpha \in A \text{ let } f_{\alpha} : (X_{\alpha}, T_{\alpha}) \to ((X_{\alpha})_{0}, Q(T_{\alpha})) \text{ be the natural map and let } P : (\prod_{\alpha \in A} X_{\alpha}, S) \to ((\prod_{\alpha \in A} X_{\alpha})_{0}, Q(S)) \text{ be the natural map. Let } \prod_{\alpha \in A} \mathscr{T}_{\alpha} \in W \text{ such that } \mathscr{T}_{\alpha} \in Q(T_{\alpha}) \text{ for all } \alpha \in A \text{ and } \mathscr{T}_{\alpha} = (X_{\alpha})_{0} \text{ except for finitely many } \alpha \in A. \text{ Then } f_{\alpha}^{-1}(\mathscr{T}_{\alpha}) = X_{\alpha} \text{ except for finitely many } \alpha \in A \text{ and } \sin c f_{\alpha} \text{ is continuous, then } f_{\alpha}^{-1}(\mathscr{T}_{\alpha}) \in T_{\alpha}, \text{ which implies } \prod_{\alpha \in A} f_{\alpha}^{-1} (\mathscr{T}_{\alpha}) \in S. \text{ Since } P \text{ is open, then } f^{-1}(\prod_{\alpha \in A} \mathscr{T}_{\alpha}) = f((\mathcal{T}_{\alpha})) \in Q(S). \text{ Thus } f \text{ is continuous. Let } \mathcal{O} \in Q(S). \text{ Let } \prod_{\alpha \in A} (C_{y}) \in f(\mathcal{O}) \text{ and let } y = \prod_{\alpha \in A} (y_{\alpha}). \text{ Then } y \in P^{-1}(\mathcal{O}) \in S \text{ and there exists } \prod_{\alpha \in A} U_{\alpha} \in S, \text{ where } U_{\alpha} \in T_{\alpha} \text{ for all } \alpha \in A \text{ and } U_{\alpha} = X_{\alpha} \text{ except for finitely many } \alpha \in A, \text{ such that } y \in \prod_{\alpha \in A} U_{\alpha} \cap C^{-1}(\mathcal{O}). \text{ Since } f_{\alpha} \in Q(T_{\alpha}) = (X_{\alpha})_{0} \text{ except for finitely many } \alpha \in A, \text{ such that } y \in \prod_{\alpha \in A} f_{\alpha}^{-1}(\mathcal{O}) \in S. \text{ Since } P \text{ is open, then } f^{-1}(\prod_{\alpha \in A} \mathscr{T}_{\alpha}) \in T_{\alpha} \text{ for all } \alpha \in A \text{ and } U_{\alpha} = X_{\alpha} \text{ except for finitely many } \alpha \in A, \text{ such that } y \in \prod_{\alpha \in A} U_{\alpha} \cap C^{-1}(\mathcal{O}). \text{ Since } f_{\alpha} \in Q(T_{\alpha}) = (X_{\alpha})_{0} \text{ except for finitely many } \alpha \in A \text{ and } C_{y_{\alpha}} \in f_{\alpha}(U_{\alpha}) \in Q(T_{\alpha}), \text{ then } f(C_{y}) = \prod_{\alpha \in A} I_{\alpha} (U_{\alpha}) \in Q(G) \in G(G). \text{ then } \prod_{\alpha \in A} I_{\alpha} (U_{\alpha}) \in Q(T_{\alpha}), \text{ then } f(C_{y}) = \prod_{\alpha \in A} I_{\alpha} (U_{\alpha}) \subset O(T_{\alpha}), \text{ then } f(C_{\alpha}) \in Q(T_{\alpha}) = (X_{\alpha})_{\alpha} \in G(T_{\alpha}) \in G(T_{$

In [10] it was shown that the product of nonempty topological spaces is strongly Hausdorff iff each coordinate space is strongly Hausdorff and in [4] it was shown that strongly Hausdorff is a topological property. These results can be combined with Theorem 2.4 and Theorem 2.5 to obtain the following result.

THEOREM 2.6. The product of nonempty topological spaces is strongly R_1 iff each coordinate space is strongly R_1 .

In [7] it was shown that R_1 is a topological property. This result can be combined with a straightforward argument to obtain the following result.

THEOREM 2.7. Strongly R_1 is a topological property.

DEFINITION 2.5. A space is *rim-compact* iff each of its points has a base of neighborhoods with compact frontiers [11].

THEOREM 2.8. Let (X, T) be rim-compact. Then the following are equivalent: (a) (X, T) is regular, (b) $(X_0, Q(T))$ is T_3 , (c) $(X_0, Q(T))$ is Urysohn, (d) $(X_0, Q(T))$ is T_2 , (e) (X, T) is R_1 , (f) if $x, y \in X$ such that $\overline{\{x\}} \neq \overline{\{y\}}$, then there exist disjoint open sets U and V such that $x \in U$, $y \in V$, and $\overline{U} \cap \overline{V} = \phi$, and (g) (X, T) is strongly R_1 .

PROOF. Clearly from the results above (a) implies (b) implies (c) implies (d) implies (e).

(e) implies (f):Let $x \in X$ and let $O \in T$ such that $x \in O$. Then there exists a neighborhood A of x such that $A \subset O$ and $\operatorname{Fr}(A)$ is compact. For each $y \in \operatorname{Fr}(A)$, $\overline{[y]} \neq \overline{[x]}$ and there exist disjoint open sets U_y and V_y containing x and y, respectively. For each $y \in \operatorname{Fr}(A)$, let U_y and V_y be disjoint open sets containing x and y, respectively. Then $\{V_y | y \in \operatorname{Fr}(A)\}$ is an open cover of $\operatorname{Fr}(A)$ and there exists a finite subcover $\{V_{y_i} | i=1, \dots, n\}$. Then $x \in B = \binom{n}{\bigcap_{i=1}^n U_{y_i}} \cap (\operatorname{Int}(A)) \in T$ and $\overline{B} \subset A \subset O$. Thus (X, T) is regular. If $a, b \in X$ such that $\overline{[a]} \neq \overline{[b]}$, then there exist disjoint open sets U and V such that $a \in U$ and $b \in V$ and since (X, T) is regular, there exist open sets W and Z such that $a \in W \subset \overline{W} \subset U$ and $b \in Z \subset \overline{Z} \subset V$.

(f) implies (g): Let $x \in X$ and let $O \in T$ such that $x \in O$. If $y \in X - O$, then $\overline{[x]} \neq \overline{[y]}$ and there exist disjoint open sets containing x and y, respectively, which implies $y \notin \overline{[x]}$ and $\overline{[x]} \subset O$. If $a, b \in X$ such that $\overline{[a]} \neq \overline{[b]}$, then there exist disjoint open sets U and V such that $a \in U$ and $b \in V$ and $\overline{[a]} \subset U$ and $\overline{[b]} \subset V$. Thus (X, T) is R_1 and $X_0 = \{\overline{[x]} \mid x \in X\}$. Let $\overline{[x]}, \overline{[y]} \in X_0$ such that $\overline{[x]} \neq \overline{[y]}$. Then there exist disjoint open sets U and V in X such that $x \in U$, $y \in V$, and $\overline{U} \cap \overline{V} = \phi$. Then $P(U), P(V) \in Q(T)$ such that $\overline{[x]} \in P(U), \overline{[y]} \in P(V)$ and $\overline{P(U)} \cap \overline{P(V)} = P(\overline{U}) \cap P(\overline{V}) = \phi$. Thus $(X_0, Q(T))$ is Urysohn, which implies $(X_0, Q(T))$ is strongly Hausdorff and (X, T) is strongly R_1 .

(g) implies (a): Since (X, T) is R_1 , then by the argument above (X, T) is regular.

3. Semi topological properties, minimal strongly R_1 , and strongly R_1 -closed

DEFINITION 3.1. Let (X, T) be a space and let $A \subset X$. Then A is semi open iff there exists $O \in T$ such that $O \subset A \subset \overline{O}$ [9].

DEFINITION 3.2. A 1-1 function from one space onto another space is a *semihomeomorphism* iff images of semi open sets are semi open and inverses of semi open sets are semi open. A property of topological spaces preserved by semihomeomorphisms is called a *semi topological property* [2].

In [3] it was shown that for a set X and a topology T on X, [T], the equi-

159

Charles Dorsett

valence class of topologies on X which yield the same semi open sets as T, has a finest element, denoted by F(T), and $F(T) = \{O - N | O \in T \text{ and } N \text{ is nowhere}$ dense in $(X, T)\}$. In [2] and [4], respectively, it was shown that Hausdorff and strongly Hausdorff are semi topological properties. The following example shows that this result can not be extended to R_1 and strongly R_1 .

EXAMPLE 3.1. Let T be the usual topology on N. Then $(\beta N, W)$, the Stone-Čech compactification of (N, T), is extremely disconnected and has non isolated points [11]. Let x be a non isolated point of βN and let $y \notin \beta N$. Then $S = \{O \in W \mid x \notin O\} \cup \{O \cup \{y\} \mid x \in O \in W\}$ is a topology on $Y = \beta N \cup \{y\}$ and (Y, S) is regular, which implies (Y, S) is strongly R_1 . The identity function from (Y, S) onto (Y, F(S)) is a semihomeomorphism. Since $\overline{\{x\}}_{F(S)} = \{x\} \neq \{y\} = \overline{\{y\}}_{F(S)}$ and there do not exist disjoint elements of F(S) containing x and y, respectively, then (Y, F(S)) is not R_1 .

DEFINITION 3.3. A space (X, T) with property P is called *minimal* P iff X has no strictly courser P-topologies [10].

In [10] minimal strongly Hausdorff was investigated and characterized. Since each set X with the indiscrete topology is R_1 and strongly R_1 , then (X, T) is minimal R_1 or minimal strongly R_1 iff T is the indiscrete topology on X.

DEFINITION 3.4. A space (X, T) with property P is called *P*-closed iff X is a closed subspace in every P-space in which it is embedded [10].

In [10] strongly Hausdorff-closed was investigated and characterized. The last result investigates R_1 -closed and strongly R_1 -closed.

THEOREM 3.1. $\{(X, T) | (X, T) \text{ is } R_1\text{-closed or strongly } R_1\text{-closed}\} = \phi$.

The proof follows by using a construction similar to that in Example 3.1 and is omitted.

Department of Mathematics Texas A&M University College Station, Texas U. S. A.

160

Strongly R₁ Spaces

REFERENCES

- [1] N. Bourbaki, General topology, part [, Addison-Wesley (Massachusetts, 1966).
- [2] S. Crossley and S. Hildebrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.
- [3] S. Crossley, A note on semi-topological classes, Proc. Amer. Math. Soc., 72(1974), 406-412.
- [4] _____, A note on semi-topological properties, Proc. Amer. Math. Soc., 72 (1978), 409-412.
- [5] A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly, 68 (1961), 886-893.
- [6] C. Dorsett, T₀-identification spaces and R₁ spaces, Kyungpook Math. J., 18(1978), 167-174.
- [7] W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J., 15 (1975), 41-50.
- [8] A. Hajnal and S. Juhasz, Some remarks on a property of topological cardinal functions, Acta Math. Acad. Sci. Hungar., 20(1969), 25-37.
- [9] N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [10] J. Porter, Strongly Hausdorff spaces, Acta Math. Acad. Sci. Hungar., 25(1974), 245-248.
- [11] S. Willard, General topology, Addison-Wesley (Massachusetts, 1970).