ON OSCILLATION OF SECOND ORDER DIFFERENTIAL EQUATIONS

By Hassan El-Owaidy

1. Introduction

In this paper, we shall study the oscillation and stability of the nonlinear differential equation

$$
\begin{equation*}
\left(a(t) x^{\prime}(t)\right)^{\prime}+b(x)=0, \tag{1}
\end{equation*}
$$

and the corresponding pertured equation

$$
\begin{equation*}
\left(a(t) x^{\prime}(t)\right)^{\prime}+b(x)=f(t, x, x) . \tag{2}
\end{equation*}
$$

In articles [2-9], the behaviour of the oscillatory, nonoscillatory solutions of some equations of second order have been discussed. Relatively few oscillations criteria are known for equation with perturbations see [8], and some of the references therein.

DEFINITION 1. A solution $x(t)$ of (1) is said to be stable (in the sence of Liapunov) if the solution $x(t)$ and its derivative $x(t)$ are bounded, [1].

DEFINITION 2. A solution $x(t)$ of (1) or (2) is said to be oscillatory if there is an unbounded set of zeros of $x(t)$ i. e if $t_{1} \geqslant 0$, then there is a $t>t_{1}$ such that $x(t)=0$. If there is a $t_{1}>0$ such that $x(t) \neq 0$ for $t>t_{1}$, then the solution $x(t)$ is called nonoscillatory. Equation (1) or (2) is said to be oscillatory (or B-oscillatory) if all its solutions (bounded solutions) are oscillatory.
2. In this section we shall prove that the solutions of (1) are stable and oscillatory.

- Our main assumptions are
(1) $a(t) \in C^{1}[0, \infty), a^{\prime}(t) \geqslant 0$, and $a(t)$ is bounded i. e $a_{1} \geqslant a(t) \geqslant a_{0}>0, a_{0}, a_{1} \in R$, $a^{\prime}(t) \longrightarrow 0$ as $t \rightarrow \infty$.
(2) $x b(x)>0$ and $b^{\prime}(x) \geqslant 0$ for $x \neq 0$.
(3) $B(x)=\int_{0}^{x} b(u) d u, \lim _{|x| \rightarrow \infty} B(x) \longrightarrow \infty$.

We need the following Lemma which proved by Utz [11] in proving theorem 1.
LEMMA. Suppose that $x(t)$ is a real function for which $x(t)$ is defined for $t>a$,
(i) If for all $t>t_{1} \geqslant a, x^{\prime}(t)<0, x^{\prime \prime}(t)<0$, then $\lim _{t \rightarrow \infty} x(t)=-\infty$.
(ii) If for all $t \geqslant t_{1} \geqslant a, x^{\prime}(t)<0, x^{\prime \prime}(t) \geqslant 0$, then $\lim _{t \rightarrow \infty}=+\infty$.

THEOREM 1. Under assumptions $1-3$, the soltuions of (1) are stable and B-oscillatory.

PROOF. We shall prove, first, that the solutions of (1) are stable. Multiplying. both sides of (1) by $a(t) x^{\prime}(t)$ and integrating from 0 to t, we obtain:

$$
\begin{equation*}
\frac{1}{2}\left(a(t) x^{\prime}(t)\right)^{2}+a(t) B(x(t))-\int_{v}^{t} B(x(u)) a^{\prime}(u) d u e=k \tag{3}
\end{equation*}
$$

where $k=\frac{1}{2}\left(a(0) x^{\prime}(0)\right)^{2}+a(0) B(x(0))$.
Thus

$$
a(t) B(x(t))<k+\int_{0}^{t} B(x(u)) a(u)\left[a^{\prime}(u) / a(u)\right] d u
$$

Hence by Gronwall's inequality it follows that

$$
\begin{align*}
& a(t) B(x(t)) \leqslant k a(t) / a(0), \text { i. e } \\
& B(x(t)) \leqslant k / a(0) . \tag{4}
\end{align*}
$$

Hence, by assumption (3), $x(t)$ must remains bounded as $t \rightarrow \infty$. It is clear that from (3) and (4), that $\left|x^{\prime}\right|$ is bounded.
Thus we can say, according to definition 1 , that the solutions of (1) are stable.
Secondly to prove that the solutions of (1) are B-oscillatory, we assume $x(t)>0$. On the contrary, suppose $x(t)$ is a nonoscillatory solution of (1), then $x(t)$ and consequently $x^{\prime}(t)$ must be of fixed sign. Otherwise we have the following. cases:
(i) If $x(t)=0$; we have, from (1);

$$
x^{\prime \prime}(t)=-b(x) / a(t)<0
$$

This means that the solution $x(t)$ has an infinite number of relative maxima. Thus this case is impossible.
(ii) If $x^{\prime}(t)>0$; Integrating (1) from 0 to t, we have

$$
\begin{equation*}
a(t) x^{\prime}(t)=a(0) x^{\prime}(0)-B(x(t)) \tag{5}
\end{equation*}
$$

Hence, by assumption (3), the right hand side of (5) tends to $-\infty$ as $t \rightarrow \infty$. Thus this case is impossible.
(iii) If $x^{\prime}(t)<0$: By assumption (1) then as $t \rightarrow \infty$ it follows that

$$
x^{\prime \prime}(t)=-\left[b(x(t))+a^{\prime}(t) x^{\prime}(t)\right] / a(t)<0 .
$$

Then by the above lemma, part (i), $\lim _{t \rightarrow \infty} x(t)=-\infty$.

Which is a contradiction. Thus $x(t)$ must be oscillatory solution of (1). By the first part of the theorem it follows that the solutions are B-oscillatory.

REMARK. The proof in case $x(t)<0$ is similar and has been omitted.
3. In this section we shall consider the perturbed equation (2), namely,

$$
\begin{equation*}
\left(a(t) x^{\prime}(t)\right)^{\prime}+b(x)=f\left(t, x, x^{\prime}\right) \tag{2}
\end{equation*}
$$

We assume the following:
(i) There exist a continuous functions $u(x)$ such that $f\left(t, x, x^{\prime}\right) / u(x)<V(t)$.
(ii) $x u(x)>0, u^{\prime}(x)>k>0 x \neq 0$.
(iii) $a(t) \leqslant a_{1}$ where $a_{1}, k \in R$.

THEOREM 2. Under the assumptions $\mathrm{i}-\mathrm{iii}$ of this section, if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{t_{1}}^{t} \int_{t_{1}}^{r}(b(x(s)) / u(x(s))-V(s)) d s d r=\infty \tag{6}
\end{equation*}
$$

then all solutions of (2) are oscillatory.
PROOF. On the contrary, suppose that $x(t)$ does not oscillate. Thus $x(t)$ and consequently $x^{\prime}(t)$ have fixed sign. Let $x(t) \neq 0$ for $t \geqslant \mathrm{t}_{2}>\mathrm{t}_{1}$.

Integrating (2) twice from t_{2} to t we obtain:

$$
\begin{aligned}
\int_{t_{2}}^{t}\left[a(s) x^{\prime}(s) / u(x(s))\right] d s & +\frac{k}{a_{1}} \int_{t_{2}}^{t}\left(\frac{a(s) x^{\prime}(s)}{u(x(s))}\right)^{2} d s \\
& +\int_{t_{2}}^{t} \int_{t_{2}}^{s}(b(x(s)) / u(x(s))-V(s)) d s \leqslant c_{1} t, \quad t \geqslant t_{2^{*}}
\end{aligned}
$$

It follows, from (6), that

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{t_{2}}^{t}\left(\frac{a(s) x^{\prime}(s)}{u(x(s))}\right) d s=-\infty
$$

Let R denote $\left|\int_{t_{2}}^{t}\left(\frac{a(s) x^{\prime}(s)}{u(x(s))}\right) d s\right|$, then
from Schwartz's inequality for integral, it follows that;

$$
R^{2}(t) \leqslant \int_{t_{2}}^{t}\left[\frac{a(s) x^{\prime}(s)}{u(x(s))}\right]^{2} d s
$$

Hence

$$
\left(K^{2} / a_{1}^{2} t^{2}\right)\left(\int_{t_{2}}^{t} \frac{R^{2}(s)}{s} d s\right)^{2}<\frac{R^{2}(t)}{t^{2}} .
$$

Also let $p(t)=\int_{t_{2}}^{t}\left(R^{2}(s) / s\right) d s, t \geqslant t_{2}$;
Then

$$
K^{2} / a_{1}^{2} t \leqslant p^{\prime}(t) p^{2}(t), \quad t \geqslant t_{2}
$$

and from which it follows that

$$
\frac{K^{2}}{a_{1}^{-}} \ln \left(\frac{t}{t_{2}}\right) \leqslant \frac{1}{p\left(t_{2}\right)}-\frac{1}{p(t)} \leqslant 1 / p\left(t_{2}\right) .
$$

Which is a contradiction. This completes the proof.
REMARK. The proof in case $x(t)<0$ for $t \geqslant t_{2}$ is similar and has been omitted.
GENERAL REMARK. Many research papers, for example see [$1,4,10$] have been published when the perturbing function is small, i.e the equation (2) has the form,

$$
\left[a(t) x^{\prime}(t)\right]^{\prime}+b(x)=\mu f\left(t, x, x^{\prime}, \mu\right)
$$

where μ is a small parameter.

Math. Dept. Faculty of Science Al-Azher Univ.
Nasr-City, Cairo, Egypt

REFERENCS

[1] Cesari, L., Asymplotic behaviour \& stability problems in ordinary differential equations, Academic press (1963).
[2] Chen, Y.M., Some oscillation criteria for second order nonlinear diff. equat., J. Math. Anal. \& Appli. 64 (1978), 610-619.
[3] Coles, W. J., A nonlinear oscillation theorem, International conference on diff. equat., Academic press (1975), 193-202.
[4] El-Owaidy, H., Further stability conditions for controllably periodic perturbed solutions, Studia. Sci. Math. Hung. 10(1975) 277-286.
[5] El-Owaidy, H., Stability of solutions of nonlinear autonomous equation, Bulletin, Faculty of Sc. Mansoura Univ. 7(1978).
[6] Heidel, J. W., Rate of growth of nonoscillatory solutions of diff. equat., Quart.

Appl. Math. (1971) 601-606.
[77] Kartsatos, A., Oscillation of nth order equat. with perturbations, J. Math. Anal. \& Appl. 57 (1977) 161-169.
[8] Kartsatos, A., Recent results on oscillation of solutions of forced \& perturbed nonlinear diff. equat. of even order, Lect. Notes in Pure \& Appl. Math. 28(1977) 17-72.
[9] Kartsatos, A \& Toro, J., Comparison \& oscillation theorems for equat. with middle terms of order n-1, J. Math. Anal. \& App. 66 (1978) 297-312.
[10] Loud, W., Periodic solutions of a perturbed autonomous system, Ann. Math. 70(1959) 496-529.
[[11] Utz, W., A note on second order differential equat., Proc. Amer. Math. Soc. 7 (1956) 1047-1048.

