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PERFECT MAPPINGS AND SINGULAR SETS

By Ronald D. Salmon

1. A mapping (continuous function) f: X—Y is a compact mapping if f_l(K J
is compact for each compact KCY. The mapping is perfect if f is closed and
£ Y3 is compact for each y€Y. If Y is a é-space the two concepts are the
same. A set of points in ¥ where f fails to be perfect is called a singular set
of the mapping f. Whyburn (4,5) and Cain (2) defined singular sets in their
studies of mappings where, generally, the spaces X and ¥ were locally compact
separable metric spaces. In that setting their singular sets coincide but in less
restrictive spaces they are not usually equivalent. The purpose of this paper is
to study these and other singular sets of the mapping f. We assume throughout
that X and ¥ are at least Hausdorff spaces and ¥ a k-space. Any other condi-
tion on the spaces will be mentioned explicitly.

2. Whyburn’'s concept of a Singular set.

DEFINITION 2.1. Let f: X—Y be a mapping and let BCY. Any set ACX
such that f(A)=B is called a frace of B. If A is a compact set, then we say
that B has compact trace.

DEFINITION 2.2, Let f: X—Y be a mapping and let Q be the union of the
interiors of all sets K such that f—l(K) is compact. The set §;,=Y —Q, is called
a singular set for the mapping f.

DEFINITION 2.3. Let f: X—Y be a mapping and let Q, be the union of the
interiors of all sets having a compact trace. Let §,=¥-Q.

THEOREM 2.1. The sets S; and S, are closed sets.

PROOF. Q, and Q, are unions of interiors of certain sets and thus are open
sets. Their respective complements, S, and S, are closed sets.

The following theorem was established by E. A. Michael (2, Cor. 2.1).

THEOREM 2.2. If f: XY is a closed mapping of the paracompact space X
onto Y, then every compact subset of Y is the image of a compact set in X.
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With this result the following can be proved.

THEOREM 2.3. Let f: X—=Y be a closed mapping of the paracompact space X
onto a locally compact space Y. Then each point in Y is interior to a set with
compact trace, i.e., S, =¢.

PROOF. Let y&Y. Since ¥ is locally compact, ¥ has a neighborhood U such
that ¢lU is compact. By Theorem 2.2, clU has a compact trace.

The following theorem is a generalization of a theorem of Whyburn (4, Thm.
2.1). In that work he assumed X and ¥ were locally compact separable metric
spaces, and the metric properties were essential in his proof.

THEOREM 2.4. Let f: X—Y be @ mapping. If each point of Y is intcrior to

the image of some compact set, then each compact set in Y has compact trace.

PROOF. Let K be a compact set in ¥. For each yEK there exists a compact
set C(¥)CX such that yEIntf(C(y)). Thus, KECU {Int(C(»)) : yEK].
Since K is compact, there is a finite family
{Int f(C(y.) : 1=¢<n} such that KCU {Intf(C(y)) : 1<i<n}. Now let

C=[UICOHY & 1<i<n]] ﬂf_l(K). Then C is a compact set and f(C)=K.

THEOREM 2.5. Let f: XY be a mapping wheve Y is a locally compact
space. If each compact set in Y has a compact trace, them each peint in Y is
interior to the image of some compact sel.

PROOF. For y&Y, let U be a neighborhood of ¥ such that clI/ is compact.
Now, there exists a compact CCX such that f(C)=clU. Hence, yEIntf(C).

In 1966, Whyburn (5) showed that if f: X—¥ is a monotone mapping c’_fhl(y)
is a continuum for each y&Y) and X and ¥ are locally compact Hausdorff

spaces, then S,=S,. The following example shows that, in general, $;=S..

EXAMPLE 2.1. Let X be the set of real numbers with the usual topology and
let Y=[~-1,1] be a subspace of X. Define the mapping f : X—Y such that
f(x)=x for —1<x<1,
flx)=1 for x>1,
Flx)=-1 for x<~1.
For the compact set K=[-1,1]CX, f(K)=Y. Thus, S,=¢. However, for any
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compact neighborhood L of —1 or 1, f_l(L) is not compact. Hence, S,#¢.
Note that for ¥ &Y — (1,1} if e=—5-[min{|#'~ 1], |x+1]}], then sE [ ¢, & +¢]
which is compact in ¥ and f_lix'-—e, 2'+el=[2"—e, z'+e]l, a compact set.
Thus, S;={-1,1].

THEOREM 2.6. For any mapping f: X—Y, S,CS;.

Proof. Since any set with compact inverse image has a compact trace, then
Q,CQ,. Hence, by De Morgan’s laws, S,CS,.

We include the proof of the following known result since the ideas used are
needed in the proof of the next theorem.
LEMMA. Let f: XY be a closed mapping, H an open set in X and let
B=U"'0 e

Then H is an open set in X.

PROOF. Since f is a closed mapping and HCX is an open set, then f(X—H)
is closed. Now, fIH,U(X-H)]=Y and FHYNA(X - H)=¢.
Thus, f(Hp=Y- f(X—H) is open in ¥ and therefore

HO:f_I(f(Ho)) is open in X.

THEOREM 2.7. If f:X—Y is a mapping, ¥ a regular space and y a point
of Y—S,, then for any neighborhood U of f_l(y), there exists a neighborhood V

of y such that f_l(V)CU.

PROOF. Let y&¥ -5, and let U be any neighborhood of f_l(y). Since ¥ is
regular and ¥'—S, is open, there exists a neighborhgod V of ¥ such that
clV,CY-S, and such that f '(clVy) is compact. If f ' (VCU, then the
conclusion of the theorem is satisfied.

Assume f_l(VO)T:U. The mapping f| J"'_l (clV) is a closed mapping. Let H,
=Ulf '@ :f’l(z)CfEI(VG)ﬂU]. Then H, is open and f(Hy is open in ¥,
and therefore open in Y. Then V=f(H, satisfies the conclusion of the

theorem.

THEOREM 2.8. Under the conditions of Theorem 2.7, let Y =Y-S,.
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Then g=fl f_l(Y o) is a perfect mapping.

PROOF. The results of the previous theorem show that gis a closed mapping
and for y&¥ -S|, f—l(y) is a compact set. Thus, g is a perfect mapping.

The set ¥y is an open subset of ¥. Cain (2, Cor. 3.9) erroncously concluded
that under somewhat more restricted conditions such an open set would be dense
in ¥. He asserted that for a closed mapping f: X—Y where f is onto and X,Y
are locally compact separable metric spaces, there is an open dense set GCY

such that ,ﬂf_l(G) is a compact mapping.
While it is certainly posssible to have such a dense open subset, the conditions
given do not insure its existence as the following example shows.
SXAMPLE 2.2 Let X=[0,10U(2,3] be a space with the relative topology
from the real line and ¥'= {g, b} with the discrete topology. Define f: X—Y be
f(x)=a for x£[0,1),
Flo)=b6 for x&=(2,3].
Then f is closed and continuous but there is no dense open subset GCY such
that f"ffl(G) is a compact mapping.

3. Cain’s concept of a Singular Set.

DEFINITION 8.1. Let f: X—>Y be a mapping. Let S5 be the set of all points

2 T ; . il
&Y such that each neighborhood of ¥ contains a compact set K such that f "(K)
is not compaet.

This definition of a singular set for a mapping is due to G. L. Cain, Jr. (2),
who studied certain mappings by investigating the properties of the set §; of
singular points and its inverse image.

In this section some properties of the set §, are investigated and a comparison

is made between the set S; and the §; of Section 2.
THEOREM 3. 1. Sy is a closed sel.

PRCOF. Let y =clS. For any neighborhood I7 of y, UNS3#¢. For each ¥ €UNS,,
U is a neighborhood of " and as such, U contains a compact set K such that

f (&) is not compact. Therefore, Y&ES; and §, is a closed set.

THEOREM 3.2 $;°5,.
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PROOF. It will be shown that ¥ -§,CY - S..

Let y&Y - 5,. Then there exists a neighborhood U of y such that fil(cIU) is
= compact set. Let C be any compact set in U. Then f_l(C)Cf_liclU) and
hence fﬁl(C) is a compact sct. This implies y&Y¥ -S..

The following example shows that, in general, §,#S..

EXAMPLE 3.1. Let f: X¥—Y be the identity mapping where both X and ¥
.are the set of rational numbers with the subspace topology from R, the space
«of real numbers with the usual topology. Clearly, f _I(K) is compact for each
«compact set KCY. lence, S;=¢. However, the interior of each compact set in
Y is empty. Therefore, §;=Y.

THEQOREM 3.3. If f: X—=Y is a mapping and Y is a locally compact Hous-
dorff space, then S;=S..

PROOF. If f is a perfect mapping, S,=¢=S;. If fis not perfect, by Theorem
3.2, we neced only show S,CS..

Let y&Y —S,. Then there exists some neighborhood U of y such that for each
-compact set KCU, f_](I{ ) is compact. Let W be a neighborhood of ¥ such that
«lW is compact. There exists a neighborhood ¥ of y such that y&clVCU and

yEVNWCel(VNIW)CU.
Now, cl(VNW?) is a compact set and since cI{VNW)CU, then f—l(cI(Vﬂ 128}
-is compact. Hence, y is interior to the set cl(VMW) whose inverse image is
compact and, thus, by definition, y&Y -S,. Therefore, ¥ -S,C¥-S,, or
-equivalently, §,CS,.

In his papers, Cain (1, Thm. 2.4) states the following.

THEOREM 3.4. If Y is locally compact, then for any point y&S, and any
neighborkood U of f_]’y), there is a neighborkood W of ¥ such that f_l(W JCU.

Some exception may be taken to the proof as given. However, the result now
follows from Theorem 3.3 and Theorem 3.7.

While Theorem 3.3 shows that local compactness of ¥ is a sufficient condition
for the equality of 5; and §,, the following example shows that local compact-
mess is not necessary for their equality.

EXAMPLE 3.2. Let X={-1JU({x:0<s<1]CR. Let
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Y'={(0,0} U{( )  y=sin -, 0<z<1}
be a subspace of the plane. ¥ is not locally compact.. Define f : X=¥ such thati:
Jf maps X — {—1] homeomorphically onto ¥ — {(0,0)}and f(—1)=(0,0). f is clearly"
a continuous function. Each y&¥ — {(0,0)] is interior to a closed segment of the-
curve v=sin %, 0<x<1, whose inverse image is compact. However, (0,0) is
not interior to any compact set. Thus, S={(0,0)}. Now for any neighborhood
U of (0,0), there exists a number N >0 such that for any integer # >N, the set-

&=10,0 Uf(=L 0): 9> ¥)cu.

mi ’
The set K is compact. However,

=170, 0 Ul 0) 1a> N)

compact in X. Hence, (0,00&S8,. Therefore, S;=S,.

4. More on singular sefs.

A mapping f 1 X—¥ may fall to be perfect because for some y&Y, f—le) s
not compact or because the image of some closed set in X fails to be closed in
Y. In this section singular sets are introduced whose deflinitions are motivated
by the above and used to study some properties of mappings with respect to-
closedness.

DEFINITION 4.1. Let f: X—Y be a mapping and let

S= ey : £ ' is not compact].
THEOREM 4.1. A closed mapping f: X—Y is perfect if and only if S;=9¢,.
PROOF. This follows from the definition.

Recall the following result on closed mappings.

LEMMA. ZLet f: XY be a closed mapping and let U be a neighborhood of”
f _1(3}}, y&Y. Then there exists a neighborhood W of v such that f_l(W.)CU .

THEOREM 4.2. Iff: XY isea closed mapping with X locally compact, then:
S, 7s a closed sel.

PROOF. Suppose clS,i—S4;£¢ and let y&clS,—S,. There exists a neighborhood!
U of f_l( ) such that clU is compact. Let W be a neighborhood of y such that.
FiICU. Now, WNS#¢ and for yEWNS,, £ GHCF (WCAU..
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However, since fal(y’) is a closed subset of clU, f_l( ") is compact. This con~

tradiction proves clS;—S,=¢.

It is known that the restriction of a closed mapping to an inverse set is a_
closed mapping. Therefore, we get the following result.

THEOREM 4.3. If f: XY is a closed mapping and g=f|(X —f_I(S4)).
then g is a perfect mapping of X—f_l(S4) onto Y—S4.

PROOF. Let y&Y —-S,. Then f_l(y)ﬂf_l(84):¢ and f_l(.l’) is compact in X.
Hence, g_liy) is a compact set in X~f s - Hence, g is a closed mapping-
with compact point inverses.

The following result is due to Michael (2, Thm. 1.1).

THEOREM 4.4. If f: X—=Y is a closed mapping with X paracompact and ¥
locally compact or first countable, then the boundary of fﬁl(y), defil(y), is-
compact for each yEY.

THEOREM 4.5. If f: X-Y is a closed non-perfect mapping with X paracom-
pact and Y locally compact or first countable, then Intfﬂ( ¥)#=0 for each yES,.

PROOF. If yES,, then f—l(y) is not compact. Since def—l(y) is compact,
i) -Bdyg '()#é. Hence, Intf ()4,

CORCLLARY. Under the conditions of Theorem 4.5, f_I(SQ is not compacl
and Intf (S )#¢.

THECREM 4.6. Let f: X—Y be an open-closed mapping with X paracompact

and Y locally compact or first countable. Then S, is a discrete subspace of Y.

PrROOF. If y&S,, then Intfﬂ{y)?—-éqj. Since f is an open mapping, f{Intf—l(y)}
={y| is an open set in ¥. Thus ¥ Hausdorff implies {y] is an open and closed:
subset in Y.

THEOREM 4.7. Let f: XY be a closed non-perfect mapping with X paracom--
pact and Y locally compact or first countable. Let A= {Intf_l(y) 1yE8,}.
Then g=f!(X—=A) is a perfect mapping onto f(X—A).
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PROOF. Since 4 is an open set, X—A is closed and thus g is a closed
mapping. For yE&S,, either g_I(J')=¢ or g'_l(y)=def—l(y) Nx-4)
which is compact. For »&S,, g‘l(y)=f_l(y) N (xX-A4)

which is also compact. Therefore, g is a perfect mapping.

THEOREM 4.8. Let f: X—Y be a closed mapping such that f_l(y) is connected
JSor each yEY =S, is a continuun if and only if X —f_l(S4) is a continuum.

PROOF. That ¥—S, is compact and connected when X —f_l(S ) is follows
immediately from the continuity of the mapping f.

Assume Y-S, is a continuum. By Theorem 4.3, f|(X - 1(84)) is a perfect
mapping onto ¥—S,. Thus, X—f "1(.5'4) is compact. Now, suppose X ! (S
is not connected. Then there exist disjoint closed sets A and B such that
X-£"'(S)=AUB. Hence, ¥ —S,=f(A)Uf(B)
where f(A4) and f(B) and closed sets. If y&f(A)NSF(B), then

oy=¢"'mNoU ¢ oINB),
a separation of f—l(y). Since f _l(y) is connected it much be that f(A)Nf(B)
=¢ and thus f(A)US(B) is a separation of ¥ -8, This contradiction proves

X—f-l(S4) is connected. Therefore, X—f_l(Sq) is a continuum.

It follows from the definition that S,CS;. The following example shows that,
in general, S 4;&53.

EXAMPLE 4.1. Let X be the space of real numbers with the usual topology

and let ¥=[—1,1] be a subspace of X. Define f: X—=Y such that

Jf(z)=2 for —1<zx<1:

f=—1 for |z|>1
Then f is a continuous finite-to-one mapping and S=¢. Now let U be a neigh-
borhood of 0EY. There exists €20 such that [y: —e<y<eg|CU.
Since {x s x>—:—}Cf—1 [—&,€],
i _1[ —¢g, €] is not compact and hence 0ES, Note that f is not a closed mapping
since f[1,00)=(0,1]CY.

THEOREM 4.9. If f: X—Y is a closed mapping with X locally compact, then
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Sy=5s

PROOF. For any ¥EY —S,, let U be a neighborhood of £~ '(») such that clU/
is compact. Let W be any neighborhood of ¥ such that f_ICW)CU. Then for
any compact set KCW, f (E)CclU. Thus, £~ '(K) is compact and Y —Sy
Hence, S;CS, and this implies §,=S..

When a mapping fails to be closed, there exists a set of points in ¥ which
can be described as a singular set with respect to closedness of the mapping.

DEFINITION 4.2. Let F: X—Y be a mapping. Let T be the set of all points
y&Y such that each neighborhood of ¥ contains a non-closed set with closed
trace. 7 will be called the singular set of the mapping with respect to closedness.

THEOREM 4.10. Let f:X—-Y be a mapping with Y regular. Then f isa
closed mapping if and only if T=¢.

PROOF. If f is a closed mapping, then every set in ¥ with closed trace is
closed. Thus, T=d.

Assume f is not a closed mapping. There exists a closed set KCX such that
S(K) is not closed in ¥. Let yEclf(K)—f(K). For any neighborhood U7 of 3,
there exists a neighborhood ¥V of y such that cIVCU and clVNf(E)#=¢. The
set f_l(clV)ﬂK' is closed and F[f “(cIV)NK]=[clVNF(K)], Since
yecllcdVNAE)] = [clVNAE)], cIVNSF(E) is not a closed set. Hence, yET.

THEOREM 4.11. If f: XY is @ mapping, then T is a closed set.

PROOF. If f is closed, then T=¢. If f is not closed, let y&clT. For each
neighborhood U of 3, UNT#@. Let 3'€UNT. Then U is a neighborhood of 3
and as such U contains a non-closed set with closed trace. Thus, y&T.

In light of the proof of Theorem 4.10, another set which measures the non-
closedness of the mapping f is introduced.

DEFINITION 4.3. Let T;= {yEY : there exists a closed set KCX such that
YECI (KD - KD}

THEOREM 4.12. Let f: X—Y be a mapping. Then f is a closed mapping if
and only if T,=¢.
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PROOF. If f is a closed mapping, then for every closed set KCX,
clf(K)—f(K)=¢. Hence, T=¢.

If £ is not a closed mapping, there exists a closed set KCX such that f(K)
is not closed. Thus, clf{(E)—f(K)#¢ and T#¢.

THEOREM 4.13. If f:X—Y is a mapping with ¥ regular, then T CT.

PROCF. Let y&T, and let U be any neighborhood of y. ¥ regular implies:
there exists a neighborhood ¥ of y such that cIVCU. There exists a closed set.
KCX such that yEclf(K)—f(K). Then VNf(K)#=.

Let L=f ‘[lfFNVINK.
The set L is a closed sct and f(L)=f(K)NVCU. Thus U contains a non-closed!
set with closed trace and thus y&ET.

Recall that Q, denotes a set of points in ¥ each of which is interior to a com-
pact set that hasa compact inverse under the mapping f: X—Y and S;=Y -Q,.

THEOREM 4.14. For a mapping f: XY, TNQ,=¢, i.e., TCS,.

PROOF. Suppose yETNQ,. Let U be a neighborhood of y such that clU is

compact and f_l(cIU ) is compact. Since y&T there exists a non-closed set KCU
with a closed trace, say LCX. Now Lﬂfﬁl(clU) is compact and

FANF AU =E.
Therefore, K is compact, but ¥ is Hausdorff and this implies X is closed. This:
contradiction’ proves TNQ, =¢.

THEOREM 4.15. If f:X—Y is a mapping such that f_l(y) is compact for
each yEY and Y is locally compact, then T=S,.

PROOF. It suffices to show that §,CT.

Let y&S,. There exists a neighborhood U of y such that clU is compact and’
FXelt) is not compact. Now, the mapping f|f “(clU) is not a closed mapping
since otherwise f—l(clU ) would be a compact set. Thus, there exists a closed

set KCF '(clU) with F(K) not closed in clU. Therefore, K is closed in X and!
SUED is not closed in Y. lence, y&ET and §,CT.

THEOREM 4.16. Let f: X—Y be a mapping withY regular and let C=f_1(T)..
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‘Then the mapping g=F|(X—C) is a closed mapping.

PRCOF. Suppose g is not a closed mapping. Then there exixsts a set X closed
in X —C such that g(&) is not closed in ¥ —7T. There is a closed set LCX such
that K=LN(X-C).

Now, cly_ (&) —g(K)#¢.

ILet y&cl, _rg(K)—g(K).

Then y&#£g(K) implies y&f(L). Thus, in ¥ y&cl,_,g(K)—f(L).

Since cly,_g(&)Celyf(L), then yEclypf(L)—F(L).

“This implies yETCT contrary tc y&¥ —7. Thus g is a closed mapping.

THEOREM 4.17. Let f: XY te a finite-lo-one open mapping where Yis a
melric space. Then X —C is metvizable.

PROCF. X—C is an open set so that g is an open mapping. By the previous
theorem, g: X—C—Y —T is a closed mapping. Thus, g is an open-closed finite-
‘to-one mapping onto a metric space. Since g is a perfect mapping, X—-C is
-paracompact and completely regular. With these conditions Arhangelskii (1) has
shown that the inverse image of a metric space under-an open-closed finite-{c-one
‘mapping is metrizable.
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