Kyungpook Math. J. Volume 21, Number 1 June, 1981

COMPLETELY COMPACT SPACES

By Norman Levine

By a *completely compact space*, we shall mean a space in which every subset. is compact.

In this note, we will give a variety of characterizations of completely compact spaces (when T_1 is assumed) and give some properties of completely compact topologies.

We begin with

LEMMA 1. If (X, \mathcal{F}) is an infinite Hausdorff space, there exists an infinite sequence of pairwise disjoint non-empty open subsets of X.

This is Theorem 5.2.3 in [2].

LEMMA 2. If (X, \mathcal{T}) has an infinite number of components, then there exists an infinite sequence of pairwise disjoint non-empty open subsets of X.

See Theorem 1 in [1].

THEOREM 3. Let (X, \mathcal{F}) be a T_1 -space. Then the following are equivalent:

(1) X is completely compact

(2) every open subset of X is compact

(3) every subset of X is sequentially compact

(4) every subset of X is countably compact

(5) every countable subset of X is compact

(6) every subset of X has a finite number of components

(7) $A \cap A'$ is infinite for every infinite subset A of X, A' denoting the derived set of A

(8) X contains no infinite discrete sibiet

(9) X contains no infinite Hausdorff subspace.

PROOF. (1) implies (2). This is clear.

(2) implies (3). Let A be a subset of X and suppose $\{a_n : n \ge 1\}$ is a sequence S_0 in A. Assume no subsequence of S_0 converges to a point of A. Then S_0 does not converge to a_1 and hence there exists an open set O_1 and a subsequence S_1 of

Norman Levine

 S_0 such that $a_1 \in O_1$ and S_1 lies in $\mathcal{C}O_1$, \mathcal{C} denoting the complement operator. Now S_1 does not converge to a_2 and hence there exists an open set O_2 and a subsequence S_2 of S_1 such that $a_2 \in O_2$ and S_2 lies in $\mathcal{C}O_2 \cap \mathcal{C}O_1$. By induction we have a sequence of open sets O_i and a sequence of sequences S_i such that $a_i \in O_i$, S_{i+1} is a subsequence of S_i and S_i lies in $\mathcal{C}O_i \cap \mathcal{C}O_{i-1} \cap \cdots \cap \mathcal{C}O_1$. By (2), $\bigcup \{O_i: i \ge 1\}$ is compact and hence $\bigcup \{O_i: i \ge 1\} = O_1 \cup \cdots \cup O_N$ for some N. But S_N is in $\bigcup \{O_i: i \ge 1\}$ and hence is in $O_1 \cup \cdots \cup O_N$. However S_N lies in $\mathcal{C}O_N \cap \cdots \cap \mathcal{C}O_1 = \mathcal{C}$ $(O_1 \cup \cdots \cup O_N)$, a contradiction.

(3) implies (4). Let A be a subset of X and suppose $A \subseteq O_1 \cup O_2 \cup \cdots$. Suppose that A is contained in $O_1 \cup \cdots \cup O_n$ for no n. Take $a_1 \notin O_1$, $a_2 \notin O_1 \cup O_2, \cdots, a_n \notin O_1 \cup \cdots \cup O_n, \cdots$. Let $B = \{a_n : n \ge 1\}$. It is clear that no subsequence of $\{a_n : n \ge 1\}$ converges to a point of B. Thus B is not sequentially comapct.

(4) implies (5). Let A be a countable subset of X. Then A is a Lindelof space and by (4) countably compact. Thus A is compact.

(5) implies (6). Let A be a subset of X with an infinite number of components. By Lemma 2, there exist an infinite sequence of non-empty pairwise disjoint sets B_i which are open in A. Let $b_i \in B_i$ for each *i*. Then $\{b_i : i \ge 1\}$ is a countable subset of X which is not compact.

(6) implies (7). Let A be an infinite subset of X and suppose that $A \cap A'$ is finite. Then A-A' is infinite; take a_1, a_2, \cdots an infinite sequence of distinct points in A-A'. For each *i*, there exists an open set O_i such that $a_i \in O_i$ and $A \cap O_i - a_i = \phi$ or $A \cap O_i = \{a_i\}$. Let $B = \{a_i : i \ge 1\}$. Then B is infinite discrete and hence has an infinite number of components.

(7) implies (8). Suppose $A \subseteq X$ and A is infinite and discrete. Take $a \in A$; there exists an open set O such that $\{a\} = A \cap O$. Then $A \cap O - a = \phi$ and $a \notin A'$. Thus $A \cap A' = \phi$.

(8) implies (9). Suppose $A \subseteq X$, A is infinite and A is a Hausdorff subspace of X. By Lemma 1, there exists a sequence of non-empty disjoint sets A_i which are open in A. Let $a_i \in A_i$ for each i and let $B = \{a_i : i \ge 1\}$. Then B is infinite and discrete.

(9) implies (1). (Here is where T_1 is used.) Suppose $A \subseteq X$ and A is not compact. Then there exists $\{O_{\alpha} : \alpha \in A\}$, an open cover of A with no finite subcover. Take $a_1 \in A$; then $a_1 \in O_{\alpha_1}$ for some α_1 . Take a_2 in A such that $a_2 \notin O_{\alpha_1}$. $a_2 \in O_{\alpha_2}$ for some α_2 . By induction there exists sequences $\{a_i : i \geq 1\}$ and $\{\alpha_i : i \geq 1\}$ such that $a_i \in O_{\alpha_i}$ and $a_i \notin O_{\alpha_i} \cup \cdots \cup O_{\alpha_{i-1}}$ for $i \ge 2$. Let $B = \{a_i : i \ge 1\}$. Then B is infinite and Hausdorff. Let $a_n \neq a_m$ and assume that n < m. Then $a_n \in B \cap O_{\alpha_n}$ and $a_m \in B \cap (O_{\alpha_m} - \{a_1, \cdots, a_m\})$ and $B \cap O_{\alpha_n}$ and $B \cap (O_{\alpha_m} - \{a_1, \cdots, a_m\})$ are disjoint and open in B.

LEMMA 4. Let \mathcal{T} and \mathcal{U} be topologies on X for which (X, \mathcal{T}) and (X, \mathcal{U}) are completely compact. Let $\mathcal{V} = \sup\{\mathcal{T}, \mathcal{U}\}$. Then (X, \mathcal{V}) is completely compact.

PROOF. Let $\mathscr{G} = \mathscr{T} \cup \mathscr{U}$; then \mathscr{G} is a subbase for \mathscr{V} . It suffices to show that every subset A of X is \mathscr{G} -compact. Let $A \subseteq X$ and $A \subseteq \bigcup \{O_{\alpha} : \alpha \in \Delta\} \cup \bigcup \{U_{\gamma} : \gamma \in \Gamma\}$ where $O_{\alpha} \in \mathscr{F}$ for each $\alpha \in \Delta$ and $U_{\gamma} \in \mathscr{U}$ for each $\gamma \in \Gamma$. Now $\{O_{\alpha} : \alpha \in \Delta\}$ is a \mathscr{T} -open cover of $\bigcup \{O_{\alpha} : \alpha \in \Delta\}$ and hence $\bigcup \{O_{\alpha} : \alpha \in \Delta\} = O_{\alpha_1} \cup \cdots \cup O_{\alpha_n}$ for some $\alpha_1, \cdots, \alpha_n$ in Δ . Likewise $\bigcup \{U_{\gamma} : \gamma \in \Gamma\} = U_{\gamma_1} \cup \cdots \cup U_{\gamma_n}$ for some $\gamma_1, \cdots, \gamma_m$ in Γ . Thus $A \subseteq O_{\alpha_1} \cup \cdots \cup O_{\alpha_n} \cup U_{\gamma_1} \cup \cdots \cup U_{\gamma_n}$.

LEMMA 5. Let $f: (X, \mathcal{T}) \to (Y, \mathcal{U})$ be a surjection and let \mathcal{T} be the weak topology, that is, $\mathcal{T} = \{f^{-1}[U] : U \in \mathcal{U}\}$. If (Y, \mathcal{U}) is completely compact, then so is (X, \mathcal{T}) .

PROOF. Let $A \subseteq X$ and suppose $A \subseteq \bigcup \{f^{-1}[U_{\alpha}] : \alpha \in \Delta\}$. Then $f[A] \subseteq \bigcup \{U_{\alpha} : \alpha \in \Delta\}$ and f[A] is compact. Thus $f[A] \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$ for some $\alpha_1, \cdots, \alpha_n$ in Δ . Then $A \subseteq f^{-1}[U_{\alpha_1}] \cup \cdots \cup f^{-1}[U_{\alpha_n}]$.

LEMMA 6. Let $f: (X, \mathcal{F}) \to (Y, \mathcal{U})$ be a continuous surjection and suppose that (X, \mathcal{F}) is completely compact. Then (Y, \mathcal{U}) is completely compact.

We omit the easy proof.

THEOREM 7. Let (Z, \mathcal{W}) be the product space of (X, \mathcal{T}) and (Y, \mathcal{U}) . Then (Z, \mathcal{W}) is completely compact iff (X, \mathcal{T}) and (Y, \mathcal{U}) are completely compact.

PROOF. If (Z, \mathscr{W}) is completely compact, then (X, \mathscr{T}) and (Y, \mathscr{U}) are completely compact. This follows from Lemma 6.

If (X, \mathscr{T}) and (Y, \mathscr{U}) are completely compact, then so is (Z, \mathscr{W}) . This follows from Lemmas 4 and 5.

Theorem 7 cannot be extended to infinite product as is shown by

EXAMPLE 8. Let $Y = \{a, b\}$ and $\mathscr{U} = \{\phi, \{a\}, \{b\}, Y\}$. Let $(X_i, \mathscr{T}_i) = (Y, \mathscr{U})$ for $i \ge 1$ and let $(X, \mathscr{T}) = \prod \{(X_i, \mathscr{T}_i) : i \ge 1\}$. Then (X_i, \mathscr{T}_i) is completely compact

Norman Levine

for all *i*, but (X, \mathscr{T}) is not. For if every subset of X were compact, then every set would be closed (X is Hausdorff) and (X, \mathscr{T}) would be discrete.

THEOREM 9. Let (X, \mathcal{T}) be infinite and completely compact. Then there exists a topology \mathcal{U} on X for which $\mathcal{T} \subseteq \mathcal{U}$, $\mathcal{T} \neq \mathcal{U}$ and (X, \mathcal{U}) is completely compact.

PROOF. $\mathscr{T} \neq \mathscr{I}(X)$ lest (X, \mathscr{T}) be discrete and not compact. Let $A \in \mathscr{I}(X)$ $-\mathscr{T}$. Let $\mathscr{V} = \{\phi, A, X\}$. Then \mathscr{V} is a completely compact topology for X; let $\mathscr{U} = \sup\{\mathscr{T}, \mathscr{V}\}$. Then (X, \mathscr{U}) is completely compact by Lemma 4.

THEOREM 10. Let (X, \mathcal{F}) be a space which is not completely compact. There exists then a topology \mathcal{U} for X such that $\mathcal{U} \subseteq \mathcal{F}$, $\mathcal{U} \neq \mathcal{F}$ and (X, \mathcal{U}) is not completely compact.

PROOF. Let $A \subseteq X$, A not compact. Let $\{O_{\alpha} : \alpha \in \Delta\}$ be an open cover of A with no finite subcover. There exists a sequence a_i in A and a sequence α_i in Δ such that $a_i \in O_{\alpha_i}$ for all i and $a_i \notin \alpha_1 \cup \cdots \cup O_{\alpha_{i-1}}$ for $i \geq 2$. Let $\mathcal{U} = \{U \mid U = \phi \text{ or } U \in \mathcal{T} \text{ and } U \supseteq O_{\alpha_1} \cup O_{\alpha_2}\}$. Clearly \mathcal{U} is a topology for X, $O_{\alpha_1} \notin \mathcal{U}$ and A is not \mathcal{U} -compact.

The Ohio state university

REFERENCES

 Norman Levine, American Mathematical Monthly, Vol.69, No.10, December, 1962.
William J. Pervin, Foundations of General Topology, Academic Press, New York-London, 1964.

4