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PSEUDO-UNIVERSAL SPACES OF. VECTOR BUNDLES

KYU-HYUN SOHN, B.S., M.S.

§ 1. Introduction

In [1], Bott studied on foliations by means of connections and the Pontryagin
classes. Such study is important in the theory of vector bundles.

Motivated by [1}, we introduce the concept of pseudo-universal spaces of vector
bundles. Our main result is that the set Iso{ €¢(M)) of certain isomorphism classes
of some continuous functors related to the category ¢ (M) of all differentiable mani-
folds and all manifold homomorphisms is a pseudo-universal space of € (M) itself.

Section 2 is devoted to give some preliminary facts on vector bundles and con-
nections.

In Section 3, we derive the concept and some illustrations of topological categories.
In order to describe the topological category I, in Example 3.12, we obtain some
necessary facts on sheaves and Ig-cocycles. In particular, a relation between Io-
cocycles and connections is given in Proposition 3. 11.

In Section 4, we define the continuities of functors between topological categories
and of natural transformations of such functors, and pseudo-universal spaces of

categories of topological spaces. Our main result is Theorem 4. 8.

~ § 2. Vector Bundles and Connections

Let G be an effective topological transformation group of a topological space VY.
For topological spaces E and X, a coordinate bundle 2= (E, n, X, Y, G) satisfies
the following conditions, where n | E—~X is a continuous surjection:

(i) There exists an open covering {Va scs of X such that, for each A€ J, the

following diagram commutes

VaxyY ks

n ‘(yﬂ)

» ”lVﬁ

Vi
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2 Kyu-Hyun Sohn, B. 8, M. 8.

where ks is a homeomorphism and piix, y)=x for each (x, y) EVoX Y. In this
case, hs is called the coordinate function. ‘
(ii) If the fun;tion hax' Y—+n"'(x) is defined by har(y) =has(z, y), then for all

(a, B) €JXJ and zEV,NV,,

haohaz: ¥ = Y
is. & homeomorphism. Since G is isomorphic to the set of all homeomorphisms of Y
to itself, we see that hshoha xr=gs(x) €EG. That is,

gso. VoMV — G
is continuous. If we put Y,= n7'(x) for each z€X, Y. is called the fiber at xz.

The following proposition is easily proved ([13}).

Proposition 2.1 (i) hz'<hq(x, y) = (z, gea(x)y) for every (x, y) € (VoVy XY,
(i) For x€V,, galz) =the identity of G.
(ifi) For x€VaNVaNVy, gya(x)gaa(2) =gm(2).
(iv) For 2€VaNVs, (gsa(2)) ' =gas(x).
(v) If psin ' (Vg—Y is defined by : pa(b) =hg's(b), n(b)==zx, then
patha(z, y) =y, ho(m (b), ps(b))=1b
8aa(n (b) + pa(b)) = pa(b), 7 (b) €VaIV,

Definition 2.2 In a coordinate bundle B@=(E, », X, Y, G) as defiried above, E is
the total space of @, X is the base space of @, G is the struciure group of 2, Y
is a fiber space, (Vq, hs) is a chart of @ for each BE€J and ga i3 a coordinate
transformation of @ where (e, B) €EJXJ.

A coordinate bundle @=(E, n, X, Y, G) with charts {(Vs, hs)} e, and coordinate
transformations {gas} ases is equivalent to @ with charts {(V{, h$)} yer and coor-
dinate transformations. {g+} vies, if there exist continuous maps

Bra: Vax Vi — G, BEJ, yeS
such that

£va(%) =8va(z) e gaa(x), EVNV,NVY;

81a(x) =g.5(x) g(x), xEV,NVINVL

A fiber bundle is defined to be an equivalence class of coordinate bundles. Let
A={E, n, B, Y, G) be a fiber bundle. If Y=R"(R=reals) and G=GL(n R), then
4= (E, n, B, R", GL(n, R)) is called a real vector bundle over B with dimension n.
In general, an n-dimensional real vector bundle #=(E, n, B, R" GL(n, R)) is
written as .4"=(E, x, B) or (E(48"), n, B(4@™)).
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Pseudo-Universal spaces of vector bundles 3

Let Vect«(B) be the set of all isomorphism c]as_ses of k-dimensional vector bun-
dles over a topological space B and PS be the category of all paracompact spaces
and homotopy classes of continuous maps. Then

Vect, ! PS —— E,
is a cofunctor, where Eg.s is the category of all sets and functions. That is, for
(f]:B-B in PS,
Vectr(l f1) ! Vecty(B’) —=s Vect,(B)
f':‘ nnne {f*?lf")}.
where [f] is the homotopy class containing f and {f*(£*)} is the isomorphism
class containing f*(£'%).

For the k-dimensional Grassmann variety G«(R") (n2k), let 75 be the canonical
k-dimensional real vector bundle over Gx(R"). Then ¥4 is the canonical line bundle
over RP"'=G,(R"), where RP™"' is the (n—1)-dimensional real projective space.
In particular, 7* denotes the canonical k-dimensional real vector bundle over Gr(R™).

As is well known, for BE€P’S, each £"€Vecty(B) is isomorphic to f*(7*) for
some f: B—Gx(R™). Let [B, Gx(R™)] be the set of all homotopy classes of con-
tinuous functions from B to G.(R™). Define

%5 . |B, Ge(R®)] = Vectx(B)
by taking #a([f])={/*(»")} for each [f]1€[B, Gx(R*)]. Then the following pro-

position holds:

Proposition 2.3
p={ps| BEPS} | [——, G«(R)] —Vectx( )

is an isomorphism as a natural transformation between cofunctors.

Proof. It is trivial that [—, Gx(R")] ! PS—E.. For a [f]: B—B in PS, the

following diagram commutes :

Py
[B’, Ge(R")] —————w Veci,(B’)

LLf], Gx(R™)] Vect ([ f])
[B. Gx(R™)] L Vectx(B)

Thus, ¢ is a natural transformation, i, e., for gl €{B’, G.(R*)],
“NVecte([ f1) o @n ([8]) =Vectel[ f1) {{g* (¥O}) = {f** (¥")},
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4 Kyu-Hyun Sohn, B. 8. M. 8.

gacllf1, Go(R7)] ([8]) =@, ([&f]) = {*a* (¥")}.

Furthermore, it is clear that ¢ is ah isomorphism. [ ]

The following facts are well known:

(i) For each positive integers k and n, Gx(R") is compact and hausdorff {7,
(9n.

(ii) (Morita’s Theorem) If a regular topological space is the countable union of
compact subsets, then it is paracompact and the direct limit of a sequence K,CK,
C--- of compact spaces is paracompact. Therefore, the direct limit G,(R") of a
sequence Gx(R™ CG.(R™') CGL(R™*) T+ of compact spaces is & paracompact

space.

Definition 2.4 A real vector bundle &,=(E. n, B,), where B, is paracompact,
is called a universal bundle if, for each paracompact space B and & real vector
bundle 7%= (E(5*), n, B(n")), there exists a continuous map f: B—B, such that n*

= f¥*(¢,) for dimension &.

Example 2.5 (i) By Proposition 2.3, 7*=(E(y*), n, Gx(R*)}) is a universal
bundle for dimension k.

(i) We can generalize the above example. Let # be a separable real Hilbert
space. Since X has an orthonormal base, there exist n-dimensional subspaces in #
for some nonnegative integer n. Define BGL, to be the set of n-dimensional sub-
spaces of #, and topologize this set in some reasonable way, i. e, define a metric
on BGL, by taking the distance between two n-dimensional subspaces of # to be
the angle between these subspaces. Then for all BEPS,

[B, BGL,]e———————Vecta(B)
([11). Since BGL, is a paracompact space,
{(V, 2) EBGL X#|xEV} ——=BGL,
is a universal bundle for dimension n. The space BGL, is called a classifying
space in the category PS, and for each BEPS, a continuous map f. B——=BGL, is
called a classifying map.
In this paper, we need the concept of connections, and thus we shall describe

some elementary properties about connections.
Definition 2.6 Let M be a differentiable manifold with dimension n, and let T(M)
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Pseudo-Universal spaces of vector bundles 5

—M be the tangent bundle over M. Then the fiber {or the tangent space) T.(M)
at x is an n-dimensional real vector space. We put that
(i) F(M)=the set of all C”-class functions : M—R,
(i) X(M)=the set of all C”-class vector fields of M.
If »: E—~Mis a real vector bundle over M, we put
(i) I'(E) =the set of all. C"-class sections of M.
Then X(M) =T'(T(M)), X(M) and I'(E) are #(M)-modules.

Definition 2.7 Let n . E—~M be a real vector bundle. A connectién 7. XM x
I'(E)—T(E) is an R-linear map satisfying
(1) (X, f) =Tx(fs) =X (f)(8)+fTs(s),
(i) Vox(s)=fVx(s)
for all fe#F (M), X€X(M) and s€I'(E). The curvature K of a connection V is a
map
K : X (M) XX (M)—— Hom.(I'(E), I'(E))
defined by
KX, Y)=[9, Vy]“le.n"‘vav—vvvx“vtx,ri
for all (X, Y) €X' (M) xX(M).

Then, as is well known, the following hold ([1]):
(i} There. exists at least one connection on a real vector bundle E—~M,
(i) For f, 8 hEF M), X, YEX(M) and s€I'(E),
K(fX, gY) (hs) = fghK (X, Y) ().
(i) For X, YEX(M), K(X, V)=—K(Y, X).
Consider a tangent bundle T(M")—M" and a chart (U,, ¥).
Then for a local coordinate {(z', -, ") (x€U,, @,(x)=(a', -+, ")), T(M™ has a
base ;-}rgi}ﬁ Let the dual base of |—Zr. - — x| be {dz}- da", which is
a base of the n-dimensional real vector space T:(M)* Let Ax(U,) be the associ-
ative algebra over R generated by 1, dx', -+, da” satisfying the following conditions:
(i) 1 is the multiplicative identity,
(i) dxt-de’=—dx’'-dx* for all 15, j&n
We put
AX W)= B Arw,).
AMU,, ={w . U~ As(U) lw is smooth},
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6 Kyu-Hyun Sohn. B. 8. M 8.

then A*(U,) = @A"(Uj) is called the groded algebra of differential forms on U,,
Each element w of A*(U,) is called & k- form on U,, and it is written by
w=2 Soiu detidat*
Ths - ssn
where fi,. . € F(M™),

Let E—~M be a g-dimensional real vector bundle over a differentiable manifold M
and let (Us ¥a) be & chart of M. Then E|Us bas a smooth frame {sf, -, s3}.
Since K(X, Y) : I'(E)—~I(E) is an R-linear map, K(¥X, Y) is completely determin-
ed by K(X, Y)(s4), -, and K(X, Y) (s3). Since K(X, V) (sh) (15i=q) is an ele-
ment of the vector space generated by {sh, -, sif, |

K(X. V) (s8) = 55 K5 (X, V)st,
where K% (X, Y)E€ R. This implies that K¢ (X Y)€A*(U,). Put K% (X, Y)=K9%,
then K(X, Y)|U,=K®=(K%) is called the curvaiure mairiz of K (or V). In this
case, we easily see that K% (¥, Y)=—K5 (Y, X).

Proposition 2.8 For two charts (Us, @) and (Us, ®a4), UsNUs*¢, K= gosK g2h,
where gas=®a'+@s. UsNUsz—GL{(n, R).

Proof If {sh -, sy} is a smooth frame of E|U. then {gae(x)sh, ', gaalz) 83 1s
a smooth frame of E|Us, where x£U,NUs. Then
gae (DK (X, V) (8aal2) s0) =K (X, ) (53),
and therefore
gaa (K®) gaa=(K®).
By Proposition 2.1, &ss =ges. Thus we have
8as(K”) gaa =8z K°gsa=K". 1
Similarly, for XzEI(M), x: T(E)y=T'(E) is an R-linear map, and thus
(st = 3} 85 (X) 5%,
where 85(X) €A (Uy. If we put 8= (87 (X))~ (87), then d§°—8% g°=K?"
([8], vol 1).

§ 3. Topolegical Categories

Definition 3.1 Let ¥ be a category with the class 0bj(¢) of ohjects and the
class Morph(¥¢) of morphisms. A category ¥=0bj(€) Morph(¥¢) is called a to-

pological category if it satisfies the following axioms:
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Pseudo-Universal spaces of vector bundles 7

(i) Obj(€) and Morph(€) are topological spaces.
(i) The function Morph(€)— 0bj(€¢) X 0bj(¥€¢) defined by fi~e (X, Y) for all f
€ Hom(X, Y) is continuous.
(ii) The composition Morph(€) % Morph(€)~ Morph(¥€) is continuous, where
Morph (€)% Morph(€¢)={(f, g) €EMorph(€) X Morph{€¢) | f-g is defined}.
(iv) The function 0bj{(¢)— Morph{¥¢) defined by Xr~»1y is continuous.
Therefore, the topological category is small; conversely, any small category ¢
can be regarded as a topological category with the discrete topologies on 0bj(€)

and Morph{¢).

Example 3.2 Let G be a topological group, and. let ¢ be a category such that
0bj(¢)=1{G} and Morph(€¢)=G ie, €¢=GUG,
Then € is a topological category.

Proof Obj(¢)= {G} has the discrete topology, while Marph(¥¢) =G has the same
topology aks G. Since G is a topological group, the product of elements in G s
continuous, and thus (i} of Definition 3.1 is satisfied. The conditions (i) and (i)

are clear, since 0bj{¢) has the discrete topology.

Example 3.3 Let X be a topological space, and let -#=1{Uu qes be an open

covering of X. We shall define the category Xi as follows:
For 3,={a, B, -, 8} CA, we put

UEaUaﬂUﬁﬂ---ﬂU,,wanUo,
and

0bj (Xa) =1{(X2, ) | ZCA, €Uy +¢}.
The set Hom((Z, x), (X, z’)) of all morphisms from (X, x) to (L7 x’) is empty
if either x #+2' or UgCUy . Otherwise, it is the single inclusion (Uy, x) < (Us, 2).
In this case,

Morph(X,) = {Hom((L, 2), (Z/, »)) (X, z), (2, x) E0bj(X)}.
The topology of Obj{X4) is obtained by taking, as basic neighborhoods, sets of the
form

{(X, x) |20 fixed, xEWCU;, W open in Usg).
Similarly, the topology of Morpk(X.) is defined by taking, as basic neighborhoods,
sets of the form

{2, 2 (2, 2) |5 and X7 fixed, *EWCUg, W open in Ugl.
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Naturally, in this case we have UpCUy.. And the category X, is a topological

category.

Proof Let f: Morph(X,)~0bj(X4s) X0bj(Xs) be defined by
(25, DG (L 2) v (I, 1), (2, 1)),
and let basic open sets of (X2, x) and (3, z) be
Van={{Z 2)|xEWCUz, W open in Us},
and
Vig.o={(Z) 2) |2EW'CUs., W’ open in Ug},
respectively. Then
' Vig o, Vipa)) = 2G5, 2) |x€WCUy, W open in U},
which is an open set of (2, x)¢s (2}’ z); and thus [ is continuous.
For i: (2, z)¢C (X)) 2) EMorph(X,), i'(Viz. ) =Vig », and thus i is continuous.

In Morph(X.), if (2, z) e e, x)i* (32%, %), then iy+i, is continuous. More-

over, it is clear that

Lgox
(Z, D)t (T, 2) Ce (T, 2)
is continuous. Therefore the category X+ is & topological category. |

In order to make one more example (Example 3.12) of a topological category, we
need to go through further study.

Let R° be the q-dimensional Euclidean space. A local diffeomorphism f: R%— R®
is a continuous map such that there exists an open subset UCR? such that flU is
a diffeomorphism. We put

Z (R%) = {local diffeomorphisms . R*“—=R%},
and for an open set UCR"

2(U) = {f€2(RY) | fIU is a diffeomorphism}.
For all x&R" the stalk 2; at x is the set 1m 2(U), where U/ is an open subset
of R®. Let 7* be the germ of y€ 2(U) (xEU) and let 2= U o7z Then 2 is a
topological space with an open base

Hry*lye2(), U open in R° |lfor all open sets in R%.
The sheaf 2R (Z24~+z) (or 2) is called the sheaf of germs of local diffeomor-

phisms ! R*—+R% For z, yER? we shall use the notation 2., = {r*€2,| 7" (x) =

¥,
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Pseudo-{/niversal spaces of vector bundles 9

Definition 3.4 A I,-cacycle on a topological space X is defined uy the following
data: For an open cover {Uas aes of X,
(i) there exists a continuous map fa. Us—R® for all €A,
We put fa= lim falV, where V is open in R®.
(i) Forzéé;g‘;l €U NUs, a germ Yas€ 2 syn. rum satisfies the following condi-
tions (where o, 8, €A}
(a) UsNUg— 4 (xr~~Y%) is continuous,
(b) fa=7asf3, and
(c) Yas=Yis+75s for each x €U NUNU,.
Furthermore, two Iy-cocycles ¢= {Ua, fo, Yisb ases and ¢’ ={Us, fa, ¥¥ub s ues are said
to be equivalent if there exists a I,-cocycle ¢” corresponding to the cover {Ug cen,
where P is the disjoint union of A and B, such that ¢”{{Ustaea=c and ¢”| {Uib resn

mcl'

Proposition 3.5 The above relation is an equivalence relation.

Proof It suffices to prove the transitive law. For three I'p-cocycles a= {Us, fo
Yia bt aaca, b=1{Us, fo, Yhot ssecs and c={Us, fo, Y55t 6.5¢», we shall prove that a~
b and b~c¢ implies a~c, where ~ is the relation defined in the above. Since a~b
there exists & ';-cocycle aUb={Ua, fa, Y5} asenus such that

(aUb) | {Us, fa, Yoz} aeea=0 and

(aUb) | {Us, fo, Yiot smen="b.
Since b~c, there exists a Iy-cocycle bUc={Us, fs, 755} asesur such that

(bUc) [ {Us, fo, Yastases=0b and

(bUc) | {Us, fo, Y30} 0.0er =c.
In this case, we define aUc= {Ua, fa, Yistasecaur such that for any 2€U,NUs; (Us€ a,
Us€e),

Yas= Yar* Yas,
where Y& €allb, 7€ bUc, x€UNULNUs; and Us€b, For the other open set UsE
b with x€U,NUsNU;, it is easy to prove that

Yas©Yae™ YarYis,
and thus Y% is well-defined, Clearly,

(aUe) | {Ue, fo, Yot aaes=a and

(aUe) [HUs: fo, Yot s.aer=c. (]
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10 Kyun-Hyun Sohm, B. 8. . M, 8.

We put H(X; I,) = the set of all I;-cocycles on X, and
HI(X; ra)’“H(X;Fq)/"‘

Definition 3.6 A folintion E of a differentiable (smooth) manifold M is a smooth
subbundle of T(M) satisfying the following conditions:
(i) There exists an open covering {Usl qes of M,
(ii) there exists submersions {fa: Ua=>R%} gea such that
(a) ElUs=Ker df, for all a€ A,
(b) Ker dfelUsNUs=Ker dfelUsNUs for all o, BEA.

That is, in the commutative diagram

dfes
T(Ue) J = T(R®)
U, fe R?

we note that Ker dfe=E|U,. (Some;imes, E is said to be g-dimensional).

Proposition 3.7 Let E be a foliation with dimension q. Then E defines a unique
element in H'(M; I,).
Proof Let {(Us, ®o)laca be a local coordinate system. For each x€U,NUs(e, 8

€ A), we have homeomorphisms such that the diagram commutes:

d¢e.x n
X R" © ;lha,gl;t“‘(x) © =7
hal x X R7 Ty, — 28 e
where (T(M), », M) is the tangent bundle over M (see Proposition 2.1). Note
that every homeomorphism in the above diagram is smooth, Since E.=R™ we
have the commutative diagram:
. S
T(M). £ T(M)s /E: - R"
!
[}
haalx ' ()| = © = © Yha
Pr jﬂ
T(M)-: T{M)./E: R?
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Pseudo-Universal spages of vector bundles 11

where pr denotes the canonical projection. we define fo! Us~R" and fs. Us~+R" by
compositions

Ja(2) = Jaspre (hal 2 XR™) (2, @ulx)) (2€U.),

Jaly) =Ffocpre(hal yX R (3, 9a(y)) (yEUs).
Then it is clear that for each x€UNU,,

Yaso fA=fF i.e. Yas=2 ign. fqur.
By our constructions of fs, fsa and Yes, if we take another local coordinate system,
¥Z, is coincided. Therefore, a given foliation defines a unique element of H'(M; Iy).

i
In general, for two I'n-cocycles ¢={Ua, fa, Yas} asea and ¢ = {Uq, &a, Yas}ascs,

if ga=fo (homotopic) for all a€A, it is not always true that c=c¢’. Hence we

need the following definition,

Definition 3.8 For ¢, ¢/€H' (X; I;), we say that ¢ and ¢’ are homotopic (written
c=c¢’) if there exists ¢c”€EH'(XXI; I;) such that c=if{(c¢”) and ¢’=i¥(c"), where I
is the closed unit interval and iy, i1: X—XXI are defined by is(x)=(x, 0) and
i(x)={(x, 1) for all z€X. We may put

F(X)=H'(X;I) /=,

since we can easily prove that

oty

is an equivalence relation.

By [5] and [61, we can construct a space BIy such that
y(—) =l——, BI,].
Therefore, for every CW-complex X, we have
I, (X)=[X, BI,]
as sets. That is, Bl is a classifying space in the category of CW-complexes for
r,(x) (Is).

Let M be a smooth manifold. An element ¢= {Ua, fo, Yasl ases is said to be smooth
if fo and 74 are smooth for all ¢, B€A. By Proposition 3,7, there is a bijection
between the set of all smooth I'e-cocycles in H'(M; I;) and the set of all foliations
of M.

Definition 3.10 Let Hix(M) be the k-dimensional de Rham cohomology greup of
M, and let @ be an invariant polynomial of degree r ([1}, [7]). Then ¢(E)=
[ (K) 1 EHY(M) is called the Pontryagin class ({10}) corresponding to ¢,  where

7. E—+M is a real vector bundle and K is the curvature of a connection on E(see
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12 Kyu-Hywn Sohn, B. 8.. M. S.

§2.). The i-th Pontryagin class P.(E) is in Htr(M), the graded subring
Pont* (E) = the subring of H:{M) generated by {1, P.(E), -, Pn (E}Y,

where #n: E—+M is n-dimensional.

Propesition 3.11 [f N is the normal bundle corresponding to a smooth [¢-co-
cycle ¢ on M, then Pont*(N)=0 for k>2¢

Proef If ¢ is an invariant polynomial, it is well known that

d{p (K))=d(p(d6°—89.8%)) =0

(see §2.) and [¢(K)] €HI (M) is independent of the choice of the connection. In
particular, Pont’(E)=0 if j is not divisible by 4([1]). Now, since N=T(M)/E
(i.e, T(M) =E@N) for a foliation E of T(M), there exists an open covering {Ud ac4
of M and the TI'i-cocycle {Ua, fa YZsbases corresponding to E. Let V¢ be the con-
nection obtained by pulling back the standard connection on R? by fa, where the

standard connection on R® is defined by
V() =XY for X, YE X (RY)

Le, if
Xxng‘_.lX”(x);%v and wa‘g% Y“(x) aj:“
for all z=(z' -+, 2%) €R° then

v 3Y“(x), 2
X:Ye= 3 (gX (x)—*a;&rl)*;;z-

=1

v (x= (2, -, 2%

Also, we note that, for €U, and a vector- field Xxmu?_"_'.;; X (x) ;;
™' -, 2")) of N at x, the vector field of R? at fo(x)= (fa(z' -, 27), -, St
o, 2 ) =yt e, y9) s
5B @) 2

Since M is paracompact, there exists a partition of unity {Aetaes of {Uslaes, and
we have the connection Vﬂ-aZ;‘ AeV® of N. For each Us(a€A) and the curvature
matrix K of ¥, K% is in the ideal of A*{Us) generated by thosée of 1-forms which
are local pull-backs by fs of 1-forms on R® The dimension of N is ¢, and thus
Io(7) *'=0. This means that @(K)=0 for an invariant polynomisl ¢ with degree

greater than q. { |

Example 3.12 We want to construct the topological category Iy as follows: we
put O0bj(Iy) = R? with the usual topology (i.e., each object of I is a point in R%)
and Morph(Iy) = {Z .zl {x, y) €ER*XR%, Therefore Morph(Iy)= < has the sheaf

topology. Then the category I¢ is a topological category.
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Proof At first, we shall prove the continuity of 2% 2 — 2 (7, Y7o n)., I
7E€2 4y and 72 €.2.y2, then there exist open sets’Ul containing z and U, contain-
ing ¥ such that 7 |U, and 7:|U, are diffeomorphisms. We put

{rlz) lzx€U)} NU,=U and 7' (U)=V,
then {(7,-»7‘)‘[:67,(U)} is an open neighborhood of 7:-7,. Note that U, V and
7:(U) are open in R% Then

(rilzeVi, {yly€l})
is an open set in Z2X Z corresponding to the open set {{7+7)*lz€» ()}, where
(#27) F=722-7{ such that 71{x)=y and 7:(y)=2z. Thus the continuity is proved.
Also,

Morph (I73) = 0bj(I) X 0bj(I3) (Zixy 27> (2, ¥))
is continuous, because there exists an open set U containing x such that ¥{U is a
difféomorphism and (U, y(U))ms{y*|z€U}, where 7(U) is an open neighborhood of
3.
Finally, we shall prove that 0bj(I%)— Morph{I;) (xv~1;) is continuous. Since 1x
is the germ of lxe: R*—=+R? at x, {17|y€U} =U for an open set U containing =x.

Therefore, Obj(Iy)—=Morph(I,) (z++1s) is continuous. 1

§ 4. Pseudo-universal Spaces

Definition 4.1 For a given toplogical space X and an open covering -#= {Ud} aca
of X, if the set
{gsa: UaMUa=GL(q, R)|a, BEA, gsa is continuous}
satisfies the following conditions:
(i) gaelx) =identity matrix for x€U,, and
(i) gasoBay=Ear,
then each gas is called a GLq-cocycle. For given GLcocycles {gael and {gas}, if
there exists a collection of continuous maps
{8o: Us~GL(q, R)}
such that
Ban () = Ba(x) * gan(x) - Balx)
for all 2€UNUs and all (a, 8) EAXA, then {gas) and {gast are said to be equi-
valent, written {ges} ~ {€ac}. Since the relation “~" is an equivalence relation, we
put
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{fall GLg-cocycles {gast}/~=H"(Xy; GL4).
The following proposition is well known ({71, [13]).

Proposition 4.2 Let &" be a real vector bundle with a local coordinate system
{(Ue, ¥a)t acs. Then there exists a unique set {gsa: UaNUs—GL(n, R)} s of GL,g
-cocycles. The converse is also true. Let 7" be a real vector bundle with the set
{gea: UsNUg=GL(n, R)} as:s of GLecocycles and the same base as &" If £"=p",
then there exists a set

{8s: Us~GL(n, R)|8, is continuous, o€ A}
such that ggolx)=0s(x) gealx) = Ba(x)"' for all x€UNU, and o, FEA.

Since GL{q, R} is a topological group, we obtain the topological category GLg by
Example 3.2. Then, Obj(GL;) and Morph{GL,) are the same subset of Morph(I',)

consisting of all diffeomorphisms R’ to itself.

Definition 4.3 Let ¢ and ¢’ be two topological categories. A functor
F: € =0bj(€) UMorph(¢) —e ¢’ =Qbj(¢’) U Morph(e’)
is continuous if F|Obj(¥¢) and F|Morph(¢) are both continuous.

Example 4.4 We give a continuous functor F': X;,—~GL, as follows: The topolo-
gical category X is the same as Example 3.3, where ¥={Ualaci is a fixed open
covering of X. Define F by taking

F((Ug, x) = (Ug, 2)) =g55 (2),
where x€UpCUy and ggy (%) =gsa(2) is a GLe-cocycle, @ is the maximal element

in 3, and £ is the maximal element in 2.’ in a linear ordering of A. Let us put

{g“:(x) ............... gm:(x)\

& <x>~—w\ =
EE o (x) e gqq(x)) .

then there exists an open neighborhood V of x such that VCUzCUg and for every

yEV, we have

j =gy {v) €EGL(q, R).

This implies that F|Morph(X,} is continuous, where g.,: V—~R is continuous for
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1=4, j=q. Next, we put
F((Ug, 2)) =GL{(q, R),
since 06j(GLo)={GL(q, R)}. Then
FlObj(Xy) : 0bj(Xa) —O0bj(GL,)
is continuous.
Furthermore, for Uy CUg CUs., the followings hold:
(i) F(lin.»n) =85 (1) =lonan.
(i) F(((Ug, )= {Ug, 2)) ((Ug, x)— (Ug, 2)))
=F((Ug, x) = (Usg, 7)) =gop(x) =855 (2)° 855 (2)
=F((Ug-, z)= Uz, 2))F((Uyg, 1) = (U, x}).

Therefore, F: Xa— GL, is a continuous functor. i

In the category Xy with an open covering #= {Uataca of X, for {(a, 8) €EAXA and

2&U,NUs, there exist only two morphisms such that

g
(UaNUs, x)

(Ua, x),
where i,(x) and is(x) are inclusion maps. Then, as the converse of Example 4.4,

we have the following lemma.

Lemma 4.3 Let F: X,—GL, be a continuous functor. Then
{gan(x) = F (ia(x) ) e (F (is(x))) "'la, BEA and 2€U,NU,

is a set of GLg-cocycles.

Proof Since B'an(x)=F(ia(x))°(F(ia(x)))_1. Boolx) =1z for all ¢€A and z€U.

For x€U,NUsNU,#¢, there exists the following commutative diagram:

Va0, 1) — 21 (Ue, ®)
iy (1) . &
/iz{x)' (UaﬂU.,‘ x) h(x) - (Uts. x)
(UsNUsNUy, z) o N
I\X . .
\(Uaﬂ[]n x) Js (I) > (UV' x)
i (x) N
. Jr(x) ;
\UaﬁUB, x) (Ua-, x)
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Then, we have
Bas(x) = F (ji(x))* (F(ja(x))) "
=F(ji(x)) s F(ii(x)) (F(ii(2))) "'« (F{j(2))) "
=F (i (x) iy (2)) (F(ja(2) e i1(x))) ",
8or(x) =F (ja(x) e iz (2) )+ (F (ju(x) = ix(x))) 7",
and thus
8an(x) « goy(x) = F (ju () 41 (2)) « (F (ja(®) » i(2))) ' F (ja(2) + ia (x))
(F(jula) = ialx))) "
=F (i (x)+ii(2)) < (F(j(x)oip(x))) !
=F(js{x) eis(2)) e (F(je(x)°is(x))) "
=F(je(2)) o (F(js(2))) " =gar(x).
Therefore, {gaa(x) =F (ia(x))* (F(is(x))) 'la, BEA, xEUNUst

satisfies the conditions (i) and (i) in Definition 4. 1. ]

Definitien 4.6 For two continuous functors F and L between topological cate-
gories € and ¢’ a natural transformation 8: F—1 is said to be continuous if
8: 0bj(€) —Morph(¢’)
H dmne 8(H) : F(H) =L (H)
is continuous. Also, F=L if there is a continuous natural transformation 8; F— L

which is an isomorphism.

Definition 4.7 Let €(TS) be a category of topological spaces and conti'nuous

maps. If a class @ of sets satisfies the following conditions:

(i) There exists an injection Vectn(X)— @ for each X€ €¢(TS) and for n=0, 1,
2v ..l
(ﬁ) 2 *{Vecln(X)’n‘n,,,..,,; XeeTS,

then & is called a pseudo-universal space of € (TS).

Let € (M) be the category of all differentiable manifolds and all. manifold homo-
morphisms. Then, a g-dimensional real vector bundle over M has a lbcal coordinate
system {(Us, ®a)}acs. We put ¥ = {Ug acs which is an open covering of M. By Iso
(M,, GL,), we mean the set of isomorphism classes of all continuous functors
from M, to GL, If we put Tse(¥(M}) denoting

{Iso(My, GLo)1g=0, 1, ©*-; ¥ an open covering of ME € (M)},
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& ”»

which may be a class of sets. We shall introduce the equivalence relation “~ in
Fso (€ (M)) by Ifo(Me, GLo) ~Iso(My, GL,) if and only if p=q and Iso (M, GL,)
> [s0(My, GL,) as sets. And we define

Iso(€¢(M)) =Tso(€(M))/~.

Theorem 4.8 Jso(€¢(M)) is a pseudo-universal space of the category ¥ (M).

To prove the theorem, we need a Lemma.

Lemma 4.9 For each ME0bj(€¢(M)) and an open covering ¥= {Ugl aea of M,
there exists an. one-to-one correspondence between Ise (M, GL, and H' (¥, GL,)
=H' (M, GL,).

Proof Let F., F:: Ms—GL, be continuous functors which are isomorphic. Then

there exists a natural transformation 8: F,—F; which is an isomorphism. Then, for

y (U, )
\

is{1) T (Us, )

the diagram

(UanUa, x)

in the topological category Ma, we have the following commutative digram:

Fl .a
GL(q, R) Gale)) GL(q R)
G(UaﬂUg, x) 0(U¢r, 15)
F:(iq
GL(q R) (ialz)) - GL(g R)

This means. that
(U, 2) o Fy(io(2)) = Fy(ialx)) « 8(UaNUs, %)
Let {gds} and {gds} be the GLcocycles which are defined by F, and F., respec-
tively; in the same way as in Lemma 4.5. Then for each x€UasNUs,
8os(x) =Fi (ia(x)) * (Fi(is(2) )} 7"
= (6(Ua, 2)) "F;(ia(2)) «8(UaNUs, z) «(8(UaNUp, 2)) 7"
(Fy(ia(x))) 1o 8(Us, x)
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=(6(Ua, z)) "< Fylia(2)) * (F1(ialx))) "' 8(Us, x)

= (0(Ua, %)) " +gaa(x) *8(Us, 2).
We put (8{Ua, x)) '=6,(x), then we have

8as(x) = Ba(x) < gas () (Bs(2)) 7.
This implies that Iso(M,, GL,) is mapped into H'(# GL,) in a well-defined way.
Example 4.4 shows that, for each {gas of GLg-cocycles there exists a continu-

ous functor F: M,—~GL, Let F, and F, be obtaiﬁed from equivalent GLg-cocycles
{gas! and {gast, respectively; where there exist continuous maps 84 Ui GL(q,
R) such that gas=68s°84s° 6s'. We have then the following commutative diagram:

F,((Ug, x)~ (Us, =gl
CL(q R) ((Ug, 2) = (Ug, 2))=g5 5 (x) GL(q R)

0(UZ, %) 0{UL‘- x)

Fz U. . — (U, "y =gt
GL(q R) ((Ug, 2)— (U, %)) g;:z(x) GL(q. R)

If @ is a maximal element in the finite set 2.’CA and # a maximal element in the
finite set 2_CA for some linear order of ‘A, then
grp (%) =gas(x), gy (x) = gae(x) ;
(Us, x) = G4(x), A(Ug, x)=0(x).
(see Example 4.4). This implies that 8,: Us,~GL(q, R) is an isomorphic natural
transformation between F; and F;. Since 6 is continuous, we have F\=F, Thus,

there is a one-to-one correspondence between [soe(M,, GLg) and H' %, GL,).

Proof of Theorem 4.8 For M€ ¢(M), we fix an open covering ¥={Uas} zes of M.
The set of isomorphism classes of g-dimensional real vector bundles over M with
a local neighborhood system @ is obtained by Vecte o (M). Then, by Proposition 4.2
and Lemma 4.9, there is a one-to-one correspondence between Veciq., (M) and
H'(U;GLg). This means that Iso(€(M)) is a pseudo-universal space of the category
€(M). [ |

Note that if we introduce an equivalence relation “~" in
GL=~{H'(%; GLg) lq=0, 1, -+, ¥: open cover of ME¥ (M)}
by H* (¥, GLJ)~H'{¥’, GL,) if and only if p=q and H'(%, GLy)—H' (%', GL,)

as sets, then UGL=GL/~ is also a pseudo-universal space of the category €{M).
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