초록
1. 낙동강 하류수의 수질조성을 파악하기 위하여 1974년 3월에서 1980년 4월까지 물금지역의 측정치2,374개 및 남지에서 원동사이 지역 측정지 483개로부터 전기전도도에 대한 염화이온, 황산이온, 칼슘, 마그네슘, 나트륨, 칼륨, 주요무기이온 총양과의 상관관계 및 염화이온, 황산이온, 칼슘, 마그네슘, 나트륨, 칼륨의 각 성분양간의 상관관계를 계산했다. 2. 물금지역에서의 각 성분양의 전기전도도에 대한 관계는 대체로 1상이온은 반대수관계가 좋았고 2상이온은 양이대수관계가 좋았다. 이 때 최소자승법으로 처리한 전기전도도($\lambda_{25}$)에 대한 각 성분양(C)의 관계식은 다음과 같다. 염화이온 $log\;C(ppm)=2.37{\cdot}\lambda_{25}(m{\mho}/cm)+0.733{\pm}0.141$, 황산이온 $log\;C(ppm)=1.12{\cdot}log\lambda_{25}(m{\mho}/cm)+2.14{\pm}0.18$,칼슘$log\;C(ppm)=0.615{\cdot}log\lambda_{25}(m{\mho}/cm)+1.67{\pm}0.12$, 마그네슘$log\;C(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.27{\pm}0.11$,나트륨$log\;C(ppm)=2.82{\cdot}\lambda_{25}(m{\mho}/cm)+0.551{\pm}0.133$,칼륨$log\;C(ppm)=1.33{\cdot}\lambda_{25}(m{\mho}/cm)+0.136{\pm}0.095$, 주요무기 이온 총양 $C(ppm)=399{\cdot}\lambda_{25}(m{\mho}/cm)-0.9{\pm}14.6$. 3. 남지와 원동사이 지역에서도 각 성분양(C)의 전기전도도($\lambda_{25}$)에 대한 관계는 대체로 1상이온은 반대수관계가 좋았고 2상이온은 양이대수관계가 좋았으며, 이 때 최소자승법으로 처리에 인한 관계식은 다음과 같다. 염화이온 $log\;C(ppm)=4.27{\cdot}\lambda_{25}(m{\mho}/cm)+0.380{\pm}0.138$, 황산이온$log\;C(ppm)=0.915{\cdot}log\lambda_{25}(m{\mho}/cm)+1.95{\pm}0.18$,칼슘 $log\;C(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.74{\pm}0.12$, 마그네슘$log\;C(ppm)=1.00{\cdot}log\lambda_{25}(m{\mho}/cm)+1.41{\pm}0.10$. 나트륨$log\;C(ppm)=2.47{\cdot}\lambda_{25}(m{\mho}/cm)+0.614{\pm}0.065$, 칼륨$log\;C(ppm)=1.62{\cdot}\lambda_{25}(m{\mho}/cm)+0.030{\pm}0.060$, 주요무기이온 총양 $C(ppm)=323{\cdot}\lambda_{25}(m{\mho}/cm)+11.7{\pm}9.3$. 4. 물금지역에서 각 성분양간에는 상관계수 $0.502\sim0.803$의 뚜렷한 관계가 있었으며 대체로 직선관계보다는 양이대수관계가 좋았다. 이 때의 최소자승법으로에 인한 각 성분양간의 관계식은 다음과 같다. $log\;Cl(ppm)=0.711{\cdot}log\;SO_4(ppm)+0.488{\pm}0.206$, $log\;Cl(ppm)=0.337{\cdot}log\;Ca(ppm)+0.822{\pm}0.130$, $log\;Cl(ppm)=0.605{\cdot}log\;Mg(ppm)-0.017{\pm}0.154$, $Cl(ppm)=0.676{\cdot}Na(ppm)+2.31{\pm}4.67$, $log\;Cl(ppm)=0.406{\cdot}log\;K(ppm)-0.092{\pm}0.112$, $log\;SO_4(ppm)=0.378{\cdot}log\;Ca(ppm)+0.721{\pm}0.125$, $log\;SO_4(ppm)=0.462{\cdot}log\;Mg(ppm)+0.107{\pm}0.118$, $log\;SO_4(ppm)=0.592{\cdot}log\;Na(ppm)+0.313{\pm}0.191$, $log\;SO_4(ppm)=0.308{\cdot}log\;K(ppm)-0.019{\pm}0.120$, $Ca(ppm)=0.262{\cdot}Mg(ppm)+0.74{\pm}1.71$. $log\;Ca(ppm)=1.10{\cdot}log\;Na(ppm)-0.243{\pm}0.239$, $Ca(ppm)=0.0737{\cdot}K(ppm)+1.26{\pm}0.73$, $log\;Mg(ppm)=0.0950{\cdot}Na(ppm)+0.587{\pm}0.159$, $log\;Mg(ppm)=0.0518{\cdot}K(ppm)+0.111{\pm}0.102$, $Na(ppm)=0.0771{\cdot}K(ppm)+1.49{\pm}0.59$. 5. 남지에서 원동사이 지역의 각 성분양간에는 칼슘의 염화이온에 대한 관계가 상관계수 0.189로 거의 관계가 없었으며 그 외는 대체로 상관계수$0.330\sim0.868$의 양이대수관계가 있었다. 이 때의 최소자승법으로 처리한 관계식은 다음과 같다. $log\;Cl(ppm)=0.312{\cdot}log\;SO_4(ppm)+0.907{\pm}0.210$, $log\;Cl(ppm)=0.458{\cdot}log\;Mg(ppm)+0.135{\pm}0.130$, $Cl(ppm)=0.484{\cdot}logNa(ppm)+0.507{\pm}0.081$, $Cl(ppm)=0.0476{\cdot}K(ppm)+1.41{\pm}0.34$, $log\;SO_4(ppm)=0.886{\cdot}log\;Ca(ppm)+0.046{\pm}0.050$, $log\;SO_4(ppm)=0.422{\cdot}log\;Mg(ppm)+0.139{\pm}0.161$, $log\;SO_4(ppm)=0.374{\cdot}log\;Na(ppm)+0.603{\pm}0.140$, $log\;SO_4(ppm)=0.245{\cdot}log\;K(ppm)+0.023{\pm}0.102$, $log\;Ca(ppm)=0.587{\cdot}log\;Mg(ppm)+0.003{\pm}0.088$, $log\;Ca(ppm)=0.892{\cdot}log\;Na(ppm)+0.028{\pm}0.109$, $log\;Ca(ppm)=0.294{\cdot}log\;K(ppm)-0.001{\pm}0.085$, $log\;Mg(ppm)=0.600{\cdot}log\;Na(ppm)+0.674{\pm}0.120$, $log\;Mg(ppm)=0.440{\cdot}log\;K(ppm)+0.038{\pm}0.081$, $log\;Na(ppm)=0.522{\cdot}log\;K(ppm)-0.260{\pm}0.072$.
Relationships between the electrical conductivity and the contents of the chloride, sulfate, calcium, magnesium, sodium, potassium and total major inorganic ions, and between each, chemical conservative constituents were calculated with the data which sampled at the lesions of Mulgeum and between Namji and Wondong from March 1974 to April 1980. Semilogarithmic relations were found between the electrical conductivity and the contents of monovalent ions, and logarithmic relations were found between the electrical conductivity and the contents of divalent ions at the both regions. The relational equations between the electrical conductivity $\lambda_{25}$and the contents of the major inorganic ions at Mulgeum are as follows: $log\;Cl(ppm)\;=\;2.37{\cdot}\lambda_{25}(m{\mho}/cm)+0.733{\pm}0.141$, $log\;SO_4(ppm)=1.12{\cdot}log\lambda_{25}(m{\mho}/cm)+2.14{\pm}0.18$, $log\;Ca(ppm)=0.615{\cdot}log\lambda_{25}(m{\mho}/cm)+1.67{\pm}0.12$, $log\;Mg(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.27{\pm}0.11$, $log\;Na(ppm)=2.82{\cdot}\lambda_{25}(m{\mho}/cm)+0.551{\pm}0.133$, $log\;K(ppm)=1.33{\cdot}\lambda_{25}(m{\mho}/cm)+0.136{\pm}0.095$, and total inorganic ions $C(ppm)=399{\cdot}\lambda_{25}(m{\mho}/cm)-0.9{\pm}14.6$. The relational equations between the electrical conductivity ($\lambda_{25}$) and the contents of the major inorganic ions at the region between Namji and Wondong a.e as follows: $log\;Cl(ppm)=4.27{\cdot}\lambda_{25}(m{\mho}/cm)+0.380{\pm}0.138$, $log\;SO_4(ppm)=0.915{\cdot}log\lambda_{25}(m{\mho}/cm)+1.95{\pm}0.18$, $log\;Ca(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.74{\pm}0.12$, $log\;Mg(ppm)=1.00{\cdot}log\lambda_{25}(m{\mho}/cm)+1.41{\pm}0.10$. $log\;Na(ppm)=2.47{\cdot}\lambda_{25}(m{\mho}/cm)+0.614{\pm}0.065$, $log\;K(ppm)=1.62{\cdot}\lambda_{25}(m{\mho}/cm)+0.030{\pm}0.060$, and total inorganic ions $C(ppm)=323{\cdot}\lambda_{25}(m{\mho}/cm)+11.7{\pm}9.3$. Logarithmic relations were found between each chemical conservative constituents at Mulgeum and the equations are as follows: $log\;Cl(ppm)=0.711{\cdot}log\;SO_4(ppm)+0.488{\pm}0.206$, $log\;Cl(ppm)=0.337{\cdot}log\;Ca(ppm)+0.822{\pm}0.130$, $log\;Cl(ppm)=0.605{\cdot}log\;Mg(ppm)-0.017{\pm}0.154$, $Cl(ppm)=0.676{\cdot}Na(ppm)+2.31{\pm}4.67$, $log\;Cl(ppm)=0.406{\cdot}log\;K(ppm)-0.092{\pm}0.112$, $log\;SO_4(ppm)=0.378{\cdot}log\;Ca(ppm)+0.721{\pm}0.125$, $log\;SO_4(ppm)=0.462{\cdot}log\;Mg(ppm)+0.107{\pm}0.118$, $log\;SO_4(ppm)=0.592{\cdot}log\;Na(ppm)+0.313{\pm}0.191$, $log\;SO_4(ppm)=0.308{\cdot}log\;K(ppm)-0.019{\pm}0.120$, $Ca(ppm)=0.262{\cdot}Mg(ppm)+0.74{\pm}1.71$. $log\;Ca(ppm)=1.10{\cdot}log\;Na(ppm)-0.243{\pm}0.239$, $Ca(ppm)=0.0737{\cdot}K(ppm)+1.26{\pm}0.73$, $log\;Mg(ppm)=0.0950{\cdot}Na(ppm)+0.587{\pm}0.159$, $log\;Mg(ppm)=0.0518{\cdot}K(ppm)+0.111{\pm}0.102$, and $Na(ppm)=0.0771{\cdot}K(ppm)+1.49{\pm}0.59$. Logarithmic relations were found between each chemical conservative constituents except a relationship between the chloride and calcium contents at the region between Namji and Wondong, and the equations are as follows : $log\;Cl(ppm)=0.312{\cdot}log\;SO_4(ppm)+0.907{\pm}0.210$, $log\;Cl(ppm)=0.458{\cdot}log\;Mg(ppm)+0.135{\pm}0.130$, $Cl(ppm)=0.484{\cdot}logNa(ppm)+0.507{\pm}0.081$, $Cl(ppm)=0.0476{\cdot}K(ppm)+1.41{\pm}0.34$, $log\;SO_4(ppm)=0.886{\cdot}log\;Ca(ppm)+0.046{\pm}0.050$, $log\;SO_4(ppm)=0.422{\cdot}log\;Mg(ppm)+0.139{\pm}0.161$, $log\;SO_4(ppm)=0.374{\cdot}log\;Na(ppm)+0.603{\pm}0.140$, $log\;SO_4(ppm)=0.245{\cdot}log\;K(ppm)+0.023{\pm}0.102$, $log\;Ca(ppm)=0.587{\cdot}log\;Mg(ppm)+0.003{\pm}0.088$, $log\;Ca(ppm)=0.892{\cdot}log\;Na(ppm)+0.028{\pm}0.109$, $log\;Ca(ppm)=0.294{\cdot}log\;K(ppm)-0.001{\pm}0.085$, $log\;Mg(ppm)=0.600{\cdot}log\;Na(ppm)+0.674{\pm}0.120$, $log\;Mg(ppm)=0.440{\cdot}log\;K(ppm)+0.038{\pm}0.081$, and $log\;Na(ppm)=0.522{\cdot}log\;K(ppm)-0.260{\pm}0.072$.