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1. Introduction

Lct A be a commutative local ring and (4 the Category of finite A—mudules. Then d:
Cs—N defined by d(£), to be krull dimension of E satisfies the following properties:
(1) dim (A/m)=0
@) If 0—E'—sE—E"—( is an exact sequence then d(E)=Max(d(£"),d(E")).

3) If 0—>aE~—E——E/aE——( where a&m is an exact sequence then d(E)=1+d(E/
ak),

A main purpose of this note is to show that the above three properties do characterize
dimension i.e., d: C,——N with the above three properties is unique. For the sake of
readers, we also give a proof of above propertics for krull dimension based on the notion
of Hilbert-Samuel polynomial.

2. Definitions and Preliminaries.

Let A be a noetherian local ring with maximal ideal m, E a finite A—module, (E,) a
stable m—filteration of E.

Let gr(A)=ér_50m’/m"'”, gr(E)=§r2m”E/m””E, gr.,(A)=m'/m'*", then gry(A)=A/m is a

field and hence gr(A) is a noetherian ring, and gr(£) is a finite gr (A)—module. gr,
(E)=w’E/m"*'E is a noetherian A—module annhilated by m.

If {x1, xg, ++oeer , X} generates m, the image %; of the x,&m generate gr(A) as an A/m—
algebra and %; has degree 1.

Proposition 1. PE(t):é‘oCLt” where C.=(m'E/w''E: A/m) is of the form f(©)/(1—b
where f)eZ(1).

Proof. We shall prove by the induction on p, the number of generztors of gr(A4) over
A/m. Let p=0, then m"/m"*'=0 for all »>0, so that gr(A)=A/m and gr(E) is a
finitely generated A/m—vector space, and hence m"E/m"*'E=0 for all n>0. Thus P:(¢)
is a polynomial.

Suppose p>0 and the proposition true for p—1. Multiplication by %, is an A—module



homomorphism of m"E/m""'E into m"*'E/m"**E and hence it gives an exact sequence:
0—P,/Pus—m"E/m" E—m" " E/m" " " E——Qp11/Qnsz——0+-*1

Let P=v(;-T§0P,/P,+,, Q=é()€),+,/0,+z. These are both finitely generated A—modules and

both annhilated by %, hence they are A/m(Zx;, Xz, *==+- , %»]J—module. Applying an additive
function to ¥1 we get
A(Po/Pai) —A("E/m™ ' E) + A(ME/ME) — A(Qni1/Qusz) =0.
Multiplying by #"*' and summing with resepct to n we get (1—H)P:()=P,()~tP,(t)
+h(t) where A(t) is a polynomial.
By the induction assumption P,(¢) and P,(¢) are rational function of the form g(¥)/
(1—%), and hence
A=DP(O)=Po(®)—tPp()+h(O)=F)/Q—1)".
Therefore P:()=f()/Q—t)*.
Corollary. For all n>0, A(m"E/wm"'E) is a polynomial in n of degree p—1.
Proof. By the proposition A(m"E/m"*'E) is the coefficient of " in f(#)/(1—¢)*. Suppose

F(D#0 and £ ié .

it N
Since (l—t)"‘_:kz(ﬁ::{)tk’ z(mnE/m.ﬂE):kZo a.(“*’iiﬁ‘l) for all n>N.
=0 <
Therefore ¢ gr™(E)=A(m"E/m""'E) is a polynomial in #n of degree<p—1. It follows
that the function
n—1
ge(M)=2E(n) =A(E/m"E) =,-§6 AW E/m'* E)

is also a polynomial in n of degree <p for all n>0.
This g=(n) is the Hilbert-Samuel polynomial in # of E with respect to m. We shall let

deg g:(n)=d(E).
Remark Define 5(E) to be the order of the pole at 1 in P;(¢) as we know easily §(E)

=d(E)—1. In fact
AE/m" E)=A(E/mE)+(mE/m*E) +++++(m"E/m" ' E).

Put Pg(t)=}°:_°]OC,t" where C,=A(m’E/m’'E) then since
C,=A,—A,_, where 4,=C,+C;+------ +C,
Px(t)= E(A(E/m ™ E)~E/m E)Y

=X NE/m M EXt —(Z(AE/mEX " Dt=1~-D X A(E/m*Et.
Therefore

5 AE/m By =—LoPay=12

1-¢

Z Am’E/m"*)E.

As we expect, 0(E)=d(E)—1.

Proposition 2. Let A, m, E be as in the proposition 1 and C. the category of finite
A-modules.

For any objects E, E', E"€(C,4, if O—E'—E—E"——0 is an exact sequence of



finite A-module, then d(E)=Max(d(E’), d(E")).
Proof. From given exact sequence we know
O——E’+m"E/m"E—E/m"E—E" /m"E"—0
is an exact sequence of finite A-module, and so E/E'+w'E=E"/m"E".
Since A(E"/m"E")=A(E/E'+m"E) < A(E/m"E) we get d(E”)<d(E) Furthermore,
A8(m) — 28" (W) =A(E/m"E)— A(E" /m"E")
=A(E/m"E)—A(E/E'+m"E)=A(E’+m"E/m"E)=A(E'/m’ N m"E)
and there exists >0 such that E’Nm"ECm™ E’ for all n>7 by Artin-Rees. Thus
AE /m"EN = A(E/E' nm"E) 2 A(E'/m""E").
This means that
() — 5" (n) and A5 (w)
have the same degree and the same leading term.
Proposition 3. Let A, m, E be as in proposition 1, and a€m mnon-zero diviser on E.
Then d(E)—1=(E/aE)
Proof. From the given condition, we get an exact sequence:
O—aE——E——E/aE—-0
and hence
O——aE+m"E/m"E——E/m"E——E/aE/m"(E/aE)—C
and then
AZE(n) =A(E/aE+m"E) =A(E/m"E) — A(@E+m"E/m"E),
aE+wmE/m"=aE/aENm"E=E/(m"E : @) and m" ' E<(m'E : ¢).
Hence
AeE(n) 2 (B/m'"E) — A(E/m"\E) = 25(n) — An(n—1).
It follows that d(£/aFE)>d(E)—1. On the other hand, aE=E as A-modules by the
hypothesis on a. We have a, exact sequence:
O—aE/aEnNm"E—E/m"E—E/aE/m"(E/aE)—0.
Hence
AaE/aENm"E)—A(E/m"E) +A(E/aE/m"(E/aE)) =0
for all #>0.
By the Artin-Rees aENm™E is a stable m-filteration of E.
Since aE=E, A(E/aE Nm"E) and Az(w) have the same leading term because the degree
and leading coefficient of Hilbert-Samuel polynomial depend only on E and m, noton the
filteration chosen. Therefore d(E/aE)<d(E)—1.

3. Main Theorem
Theorem: Let A be a local noetherian ring with maximal ideal m, E jinite A-module, g7
(E)=@m E/m™E, P«(®)=1% Ct where C=[wE/m*\E: A/ml, "5(E) the order of the

pole at 1 in Pe(t) and C. the category of finite A-modules.
Define E——A(E) €N non-negative, then followings hold:
(1) m"E=0 for some n>0&=>(1") 6(E)=6(A/m)=0



(2) O——E'—E—E"—0 is exact 6{E)=Max(6(E"), 3(E"))
(3) O—sFE—E—E/ak——0 is eyact where
aem —> (E/aE)=0(E)—1.

Conversely this map is uniquely determined by the above conditions.

Proof. (1) m"E=O0 for some n implies m(m"E)=0 and hence m""'E=0. Since m"**E=
O for all k=0 m""*E/m""**'E=0.

Thus C,.i=dim (" *E/m ) =0. Therefore P:(¢)= fi Ct= ZE C.t' because C,=0 if
y>n so the order of the pole is zero i.e. 8(E)=0. .
(1)<(1") From the given condition, we get a chain

of submodules such that E;/E;,,~A/P; by J.P. Serre.

Since P,2m— P,2m, P;,=m. Hence §(E)=6(A/P)=0.

(@) & (3) followes from proposition 2,3 and remark. conversely, by J.P. Serre, there
exists a chain such that E=E,DE, D+ DE,=0 such that E,/E;,,=A/P,; for some i.
From O—E,—FE—E/E,:—0

O—E,—E—FE,/E—0
We know d(E)=Max(d(E/E,), d(E\/E;), s+ ,d(E,_\/E)
=Max(d(A/Py), d(A/Py), - ,d(A/P))).

If d(A/P)=dim(A/P), then d(E)=dim(E).

Thus if d(E)+#dim(&) for some module £ then d(A/P)+dim(A/P) for some prime
ideal P.

Assume that d(E)+#dim(E), and then choose a maximal one among all pime ideals P
for which d(A/P)#dim(A/P).

Let P be a maximal one.

(a) P#m because if P=m then d(A/P)=0 by (1’) whereas dim(A4/m)=0.

(b) Since Psm we can pick aem—P. The multiplication by a in A/P is one-one i.e.,
O0—A/P—A/P—A/P+aA—0 is exact.

Then by (3) d(A/P+aA)=d(A/P)—1 i.e., d(A/P)=1+d(A/P+aA).

However choose A/P+aA=EDE D+ >E,=0 such that E,/E,,,=A/P;, then P,oP+
aARP. :

Because P was a maximal amongest d(A/P)+#dim(AP) we; must have d(A/P,)=dim
(A/P)) for all i. Therefore

Max(d(E/E)), A(E/E;), soeerere Y=d(A/P+aA)
=Max(d(A/P,), d(A/Py), d(A/P3), - Y=dim(A/P+aA).

Hence
d(A/P)=1+d(A/P+aA)=1+dim(A/P+aA)=dim(A/P),

which is a contradiction.

Corollary Let A—B be a local map of noetherian local rings, and E a finite B-module
which is A-flat. Then for any finite A-module M we have dim, (M )=dimz(M,QE)—dims
(E/mE).



Proof. Let C,——N where §(M)=dim,(M,Q@E) ~dim,(E/mE).
(i) 8(A/m)=dimz(AmRE) —dimp(E/mE) =dim;(E/mE)—dim;(E/mE) =0
i) O—M’'—>M—M"—( is exact
O— M ,QE— M ,QE— M" ,QE—O is exact since E is A-flat.
So dim(M,RF)=Max({dimz(M’,RF), dimz(M" QE)).
Therefore
d(M)=Max(3(M"), s(M")).
(i) O—sM—M—>M/aM—->0 where a€m is exact
= 00— M ,QE— M ,QE—M/aM ,QE—0O
= 00— M,QE— M ,QF—— M ,QE/a(M,QE)—0
= dimz (M, QFE) =1+dim(MQE/a(MQE)).
So o(M) =1+ (M/aM).
By uniqueneess
dim (M) =dim (M, QE) —dimz(E/mE).
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