A Remark on the Krull Dimension

Chan-Bong Park

Wonkwang University, Iri, Korea

1. Introduction

Lct A be a commutative local ring and C_A the Category of finite A-mudules. Then d: $C_A \longrightarrow N$ defined by d(E), to be krull dimension of E satisfies the following properties:

- (1) dim (A/m) = 0
- (2) If $0 \longrightarrow E' \longrightarrow E \longrightarrow E'' \longrightarrow 0$ is an exact sequence then d(E) = Max(d(E'), d(E'')).
- (3) If $0 \longrightarrow aE \longrightarrow E / aE \longrightarrow 0$ where $a \in \underline{m}$ is an exact sequence then d(E) = 1 + d(E/aE),

A main purpose of this note is to show that the above three properties do characterize dimension i.e., d: $C_A \longrightarrow N$ with the above three properties is unique. For the sake of readers, we also give a proof of above properties for krull dimension based on the notion of Hilbert-Samuel polynomial.

2. Definitions and Preliminaries.

Let A be a noetherian local ring with maximal ideal \underline{m} , E a finite A-module, (E_n) a stable \underline{m} -filteration of E.

Let $\operatorname{gr}(A) = \bigoplus_{\nu=0}^{\infty} \underline{m}^{\nu} / \underline{m}^{\nu+1}$, $\operatorname{gr}(E) = \bigoplus_{\nu=0}^{\infty} \underline{m}^{\nu} E / \underline{m}^{\nu+1} E$, $\operatorname{gr}_{\nu}(A) = \underline{m}^{\nu} / \underline{m}^{\nu+1}$, then $\operatorname{gr}_{0}(A) = A / \underline{m}$ is a field and hence $\operatorname{gr}(A)$ is a noetherian ring, and $\operatorname{gr}(E)$ is a finite $\operatorname{gr}_{n}(A)$ —module. $\operatorname{gr}_{n}(E) = \underline{m}^{\nu} E / \underline{m}^{\nu+1} E$ is a noetherian A—module annhilated by \underline{m} .

If $\{x_1, x_2, \dots, x_r\}$ generates \underline{m} , the image \overline{x}_i of the $x_i \in \underline{m}$ generate gr(A) as an A/\underline{m} —algebra and \overline{x}_i has degree 1.

Proposition 1. $P_E(t) = \sum_{v=0}^{\infty} C_v t^v$ where $C_v = (\underline{m}^v E / \underline{m}^{v+1} E : A / \underline{m})$ is of the form f(t)/(1-t) where $f(t) \in Z[t]$.

Proof. We shall prove by the induction on ρ , the number of generators of gr(A) over A/\underline{m} . Let $\rho=0$, then $\underline{m}^n/\underline{m}^{n+1}=0$ for all n>0, so that $gr(A)=A/\underline{m}$ and gr(E) is a finitely generated A/\underline{m} —vector space, and hence $\underline{m}^nE/\underline{m}^{n+1}E=0$ for all n>0. Thus $P_E(t)$ is a polynomial.

Suppose $\rho > 0$ and the proposition true for $\rho - 1$. Multiplication by \bar{x} , is an A-module

homomorphism of $\underline{m}^n E / \underline{m}^{n+1} E$ into $\underline{m}^{n+1} E / \underline{m}^{n+2} E$ and hence it gives an exact sequence:

$$0 - P_n/P_{n+1} \longrightarrow \underline{m}^n E/\underline{m}^{n+1} E \longrightarrow \underline{m}^{n+1} E/\underline{m}^{n+2} E \longrightarrow Q_{n+1}/Q_{n+2} \longrightarrow 0 \cdots \cdots *1$$

Let $P = \bigoplus_{\nu=0}^{\infty} P_{\nu}/P_{\nu+1}$, $Q = \bigoplus_{\nu=0}^{\infty} Q_{\nu+1}/Q_{\nu+2}$. These are both finitely generated A—modules and both annhilated by \bar{x}_{ρ} , hence they are $A/\underline{m}(\bar{x}_{1}, \bar{x}_{2}, \dots, \bar{x}_{\rho})$ —module. Applying an additive function to *1 we get

$$\lambda(P_n/P_{n+1}) - \lambda(\underline{m}^n E/\underline{m}^{n+1} E) + \lambda(\underline{m} E/\underline{m} E) - \lambda(Q_{n+1}/Q_{n+2}) = 0.$$

Multiplying by t^{n+1} and summing with resepct to n we get $(1-t)P_{\varepsilon}(t) = P_{\varrho}(t) - tP_{\varrho}(t) + h(t)$ where h(t) is a polynomial.

By the induction assumption $P_q(t)$ and $P_r(t)$ are rational function of the form g(t)/(1-t), and hence

$$(1-t)P_{E}(t) = P_{O}(t) - tP_{P}(t) + h(t) = f(t)/(1-t)^{p}$$
.

Therefore $P_{E}(t) = f(t)/(1-t)^{\rho+1}$.

Corollary. For all n>0, $\lambda(\underline{m}^n E/\underline{m}^{n+1}E)$ is a polynomial in n of degree $\rho-1$.

Proof. By the proposition $\lambda(\underline{m}^n E/\underline{m}^{n+1}E)$ is the coefficient of t^n in $f(t)/(1-t)^n$. Suppose $f(1) \neq 0$ and $f(t) = \sum_{k=0}^{N} a_k t^k$.

Since
$$(1-t)^{-\rho} = \sum_{k=0}^{\infty} {\binom{\rho+k-1}{\rho-1}} t^k$$
, $\lambda(\underline{m}^n E/\underline{m}^{n+1} E) = \sum_{k=0}^{N} a_k {\binom{\rho+n+k-1}{\rho-1}}$ for all $n \ge N$.

Therefore φ gr⁽ⁿ⁾ $(E) = \lambda(\underline{m}^n E/\underline{m}^{n+1}E)$ is a polynomial in n of degree $\leq \rho - 1$. It follows that the function

$$g_E(n) = \lambda_m^E(n) = \lambda(E/\underline{m}^n E) = \sum_{i=0}^{n-1} \lambda(\underline{m}^i E/\underline{m}^{i+1} E)$$

is also a polynomial in n of degree $\leq \rho$ for all n > 0.

This $g_E(n)$ is the Hilbert-Samuel polynomial in n of E with respect to \underline{m} . We shall let $\deg g_E(n) = d(E)$.

Remark Define $\delta(E)$ to be the order of the pole at 1 in $P_E(t)$ as we know easily $\delta(E) = d(E) - 1$. In fact

$$\lambda(E/\underline{m}^{n+1}E) = \lambda(E/\underline{m}E) + (\underline{m}E/\underline{m}^{2}E) + \cdots + (\underline{m}^{n}E/\underline{m}^{n+1}E).$$

Put $P_E(t) = \sum_{n=0}^{\infty} C_n t^n$ where $C_n = \lambda(\underline{m}^n E / \underline{m}^{n+1} E)$ then since

$$C_{\nu} = \lambda_{\nu} - \lambda_{\nu-1}$$
 where $\lambda_{\nu} = C_1 + C_2 + \cdots + C_{\nu}$

$$P_{E}(t) = \sum_{\nu=0}^{\infty} (\lambda(E/\underline{m}^{\nu+1}E) - \lambda(E/\underline{m}^{\nu}E))t^{\nu}$$

$$= \sum \lambda (E/m^{\nu+1}E)t^{\nu} - (\sum (\lambda(E/m^{\nu}E)t^{\nu-1})t = (1-t)\sum \lambda(E/m^{\nu+1}E)t^{\nu}.$$

Therefore

$$\sum \lambda(E/\underline{m}^{\nu+1}E)t^{\nu} = \frac{1}{1-t}P_{E}(t) = \frac{1}{1-t}\sum \lambda(\underline{m}^{\nu}E/\underline{m}^{\nu+1})t^{\nu}.$$

As we expect, $\delta(E) = d(E) - 1$.

Proposition 2. Let A, \underline{m} , E be as in the proposition 1 and C_A the category of finite A-modules.

For any objects E, E', E'' $\in C_A$, if $O \longrightarrow E' \longrightarrow E'' \longrightarrow O$ is an exact sequence of

finite A-module, then d(E) = Max(d(E'), d(E'')).

Proof. From given exact sequence we know

$$O \longrightarrow E' + m^n E/m^n E \longrightarrow E/m^n E \longrightarrow E''/m^n E'' \longrightarrow O$$

is an exact sequence of finite A-module, and so $E/E' + \underline{m}^*E \simeq E''/\underline{m}^*E''$.

Since $\lambda(E''/\underline{m}^nE'') = \lambda(E/E' + \underline{m}^nE) \le \lambda(E/\underline{m}^nE)$ we get $d(E'') \le d(E)$ Furthermore,

$$\lambda_m^E(n) - \lambda_m^{E''}(n) = \lambda(E/m^*E) - \lambda(E''/m^*E'')$$

$$= \lambda(E/m''E) - \lambda(E/E' + m''E) = \lambda(E' + \underline{m}''E/\underline{m}''E) = \lambda(E'/\underline{m}' \cap \underline{m}''E)$$

and there exists r>0 such that $E' \cap \underline{m}^n E \subseteq \underline{m}^{n-r} E'$ for all n>r by Artin-Rees. Thus $\lambda(E'/m^n E') \ge \lambda(E'/E' \cap m^n E) \ge \lambda(E'/\underline{m}^{n-r} E')$.

This means that

$$\lambda_m^E(n) - \lambda_m^{E''}(n)$$
 and $\lambda_m^{E'}(n)$

have the same degree and the same leading term.

Proposition 3. Let A, \underline{m} , E be as in proposition 1, and $a \in \underline{m}$ non-zero diviser on E. Then d(E)-1=(E/aE)

Proof. From the given condition, we get an exact sequence:

$$O \longrightarrow aE \longrightarrow E \longrightarrow E/aE \longrightarrow O$$

and hence

$$O \longrightarrow aE + \underline{m}^n E / \underline{m}^n E \longrightarrow E / \underline{m}^n E \longrightarrow E / aE / \underline{m}^n (E / aE) \longrightarrow O$$

and then

$$\lambda_{\underline{m}}^{E/aE}(n) = \lambda(E/aE + \underline{m}^{n}E) = \lambda(E/\underline{m}^{n}E) - \lambda(aE + \underline{m}^{n}E/\underline{m}^{n}E),$$

$$aE + m^{n}E/m^{n} \cong aE/aE \cap m^{n}E \cong E/(m^{n}E : a) \text{ and } m^{n-1}E \subseteq (m^{n}E : a).$$

Hence

$$\lambda_m^{E/aE}(n) \ge (E/m^n E) - \lambda (E/m^{n-1} E) = \lambda_m^E(n) - \lambda_m^E(n-1).$$

It follows that $d(E/aE) \ge d(E) - 1$. On the other hand, $aE \cong E$ as A-modules by the hypothesis on a. We have a_n exact sequence:

$$O \longrightarrow aE/aE \cap \underline{m}^n E \longrightarrow E/\underline{m}^n E \longrightarrow E/aE/\underline{m}^n (E/aE) \longrightarrow O.$$

Hence

$$\lambda(aE/aE \cap \underline{m}^*E) - \lambda(E/\underline{m}^*E) + \lambda(E/aE/\underline{m}^*(E/aE)) = 0$$

for all n>0.

By the Artin-Rees $aE \cap \underline{m}^n E$ is a stable \underline{m} -filteration of E.

Since $aE \cong E$, $\lambda(E/aE \cap \underline{m}^n E)$ and $\lambda_{\underline{m}}^E(n)$ have the same leading term because the degree and leading coefficient of Hilbert-Samuel polynomial depend only on E and \underline{m} , not on the filteration chosen. Therefore $d(E/aE) \leq d(E) - 1$.

3. Main Theorem

Theorem: Let A be a local noetherian ring with maximal ideal m, E finite A-module, gr

$$(E) = \bigoplus_{v=0}^{\infty} \underline{m}^{v} E / \underline{m}^{v+1} E, \quad P_{E}(t) = \sum_{v=0}^{\infty} C_{v} t^{v} \quad \text{where} \quad C_{v} = [\underline{m}^{v} E / \underline{m}^{v+1} E : A / \underline{m}], \quad \delta(E) \quad \text{the order of the}$$

pole at 1 in $P_E(t)$ and C_A the category of finite A-modules.

Define
$$E \longrightarrow \lambda(E) \in \mathbb{N}$$
 non-negative, then followings hold:

(1)
$$\underline{m}^n E = 0$$
 for some $n > 0 \iff (1') \delta(E) = \delta(A/\underline{m}) = 0$

(2)
$$O \longrightarrow E' \longrightarrow E'' \longrightarrow O$$
 is exact $\delta(E) = Max(\delta(E'), \delta(E''))$

(3)
$$O \longrightarrow E \longrightarrow E \longrightarrow E/aE \longrightarrow O$$
 is eyact where $a \in m \Longrightarrow (E/aE) = \delta(E) - 1$.

Conversely this map is uniquely determined by the above conditions.

Proof. (1) $m^n E = O$ for some n implies $\underline{m}(\underline{m}^n E) = O$ and hence $\underline{m}^{n+1} E = O$. Since $\underline{m}^{n+k} E = O$ for all $k \ge 0$ $\underline{m}^{n+k} E / \underline{m}^{n+k+1} E = O$.

Thus $C_{n+k} = dim_{A/m}(\underline{m}^{n+k}E/\underline{m}^{n+k+1}) = 0$. Therefore $P_E(t) = \sum_{\nu=0}^{\infty} C_{\nu}t^{\nu} = \sum_{\nu=0}^{n} C_{\nu}t^{\nu}$ because $C_{\nu} = 0$ if $\nu > n$ so the order of the pole is zero i.e., $\delta(E) = 0$.

(1)⇔(1') From the given condition, we get a chain

$$E \supset E_1 \supset \cdots \supset E_r = O$$

of submodules such that $E_i/E_{i+1} \simeq A/P_i$ by J.P. Serre.

Since $P_i \supseteq \underline{m} \Longrightarrow P_i \supseteq \underline{m}$, $P_i = \underline{m}$. Hence $\delta(E) = \delta(A/P) = 0$.

(2) & (3) follows from proposition 2, 3 and remark. conversely, by J.P. Serre, there exists a chain such that $E=E_0\supset E_1\supset\cdots\cdots\supset E_r=O$ such that $E_i/E_{i+1}\simeq A/P_i$ for some i.

From
$$O \longrightarrow E_1 \longrightarrow E \longrightarrow E/E_1 \longrightarrow O$$

 $O \longrightarrow E_2 \longrightarrow E_1/E_2 \longrightarrow O$

We know
$$d(E) = Max(d(E/E_1), d(E_1/E_2), \dots, d(E_{r-1}/E_r))$$

= $Max(d(A/P_1), d(A/P_2), \dots, d(A/P_r)).$

If d(A/P) = dim(A/P), then d(E) = dim(E).

Thus if $d(E) \neq dim(E)$ for some module E then $d(A/P) \neq dim(A/P)$ for some prime ideal P.

Assume that $d(E) \neq \dim(E)$, and then choose a maximal one among all pime ideals P for which $d(A/P) \neq \dim(A/P)$.

Let P be a maximal one.

- (a) $P \neq m$ because if P = m then d(A/P) = 0 by (1') whereas $\dim(A/m) = 0$.
- (b) Since $P \subseteq \underline{m}$ we can pick $a \in \underline{m} P$. The multiplication by a in A/P is one-one i.e., $O \longrightarrow A/P \longrightarrow A/P \longrightarrow A/P + aA \longrightarrow O$ is exact.

Then by (3) d(A/P+aA)=d(A/P)-1 i.e., d(A/P)=1+d(A/P+aA).

However choose $A/P + aA = E \supset E_1 \supset \cdots \supset E_r = O$ such that $E_i/E_{i+1} \cong A/P_i$, then $P_i \supset P + aA \supseteq P$.

Because P was a maximal amongest $d(A/P) \neq dim(AP)$ we must have $d(A/P_i) = dim(A/P_i)$ for all i. Therefore

$$\begin{aligned} & \operatorname{Max}(\operatorname{d}(E/E_1), \ \operatorname{d}(E_1/E_2), \cdots) = \operatorname{d}(A/P + aA) \\ & = \operatorname{Max}(\operatorname{d}(A/P_1), \ \operatorname{d}(A/P_2), \ \operatorname{d}(A/P_3), \cdots) = \operatorname{dim}(A/P + aA). \end{aligned}$$

Hence

$$d(A/P)=1+d(A/P+aA)=1+\dim(A/P+aA)=\dim(A/P),$$

which is a contradiction.

Corollary Let $A \longrightarrow B$ be a local map of noetherian local rings, and E a finite B-module which is A-flat. Then for any finite A-module M we have $\dim_A(M) = \dim_B(M_A \otimes E) - \dim_B(E/mE)$.

Proof. Let $C_A \longrightarrow N$ where $\delta(M) = \dim_B(M_A \otimes E) - \dim_B(E/\underline{m}E)$.

(i)
$$\delta(A/\underline{m}) = \dim_B(A\underline{m} \otimes E) - \dim_B(E/\underline{m}E) = \dim_B(E/\underline{m}E) - \dim_B(E/\underline{m}E) = O$$

(ii)
$$O \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow O$$
 is exact $O \longrightarrow M'_A \otimes E \longrightarrow M_A \otimes E \longrightarrow M''_A \otimes E \longrightarrow O$ is exact since E is A -flat.

So $\dim_{\mathbb{R}}(M_A \otimes E) = \operatorname{Max}(\dim_{\mathbb{R}}(M'_A \otimes E), \dim_{\mathbb{R}}(M''_A \otimes E)).$

Therefore

$$\delta(M) = \text{Max}(\delta(M'), \delta(M'')).$$

(iii)
$$O \longrightarrow M \longrightarrow M \longrightarrow M/aM \longrightarrow O$$
 where $a \in \underline{m}$ is exact
$$\Longrightarrow O \longrightarrow M_A \otimes E \longrightarrow M_A \otimes E \longrightarrow M/aM_A \otimes E \longrightarrow O$$
$$\Longrightarrow O \longrightarrow M_A \otimes E \longrightarrow M_A \otimes E \longrightarrow M_A \otimes E/a(M_A \otimes E) \longrightarrow O$$
$$\Longrightarrow \dim_B(M_A \otimes E) = 1 + \dim_B(M \otimes E/a(M \otimes E)).$$

So $\delta(M) = 1 + (M/aM)$.

By uniqueneess

$$\dim_A(M) = \dim_B(M_A \otimes E) - \dim_B(E/\underline{m}E).$$

References

- (1) M. F. Atiyah & I. G. Macdonald, *Introduction to commutative algebra*, Springer-Verlag, 1965.
- (2) Hideyuki Matsumura, commutative algebra, W. A. Benjamin, 1970.
- (3) Oscar Zariski & Pierre Samuel, Samuel, commutative algebra II, Springer-Verlag, 1975.
- (4) Jean Pierre Serre, Algebra locale. Multiplicites, Springer-Verlag, 1965.