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On the Dual Response System
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1. Introduction

The purpose of this paper is to give a confidence region of a stationary point for a
primary response v, under the constraints that the secondary response y, takes on some
specified or desirable value. Engineers and scientists frequently need to analize dual
response data. When studying a chemical reaction for instance, for each setting of group
of “input” variables determining the reaction conditions, not one but a nuimber of “output”
variables or responses may be measured. The author studies the case when only two
responses arise, one is the primary response, the other is the secondary response. We
want to know the confidence region of the optimum stationary point for the primary
response under the constraint that the secondary response takes some desirable value.

2. Dual response problem
Let the models be denoted by
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If we assume that g,;’s are i.i.d. normal (G, ¢,%), e,’s are i.i.d. normal (0,¢.>) and
cov(es;, €,;) =0, then the coefficients can be estimated by least squares method, as
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X, and Y, are similar matrices.
It is well known result that the variance-covariance matrices are the following form;
Cov(B)=(XyX,) 0", Cov()=(X/X)a.? @1
Note that X, and X, may or may not be equal matrices.
So let the fitted models be
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J.=cy+xe+xCx

where
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The solution proposed and discussed in the sequel is to find the conditions on x which
optimize (maximize or minimize) ¥, subject to §,=%, where k& is some desirable or acce-
ptable value of the secondary response. Using Lagrangian multipliers,

L=by+x'b+x'Bx—pu(c,+x'c+x'Cx—Fk) @.2
we require solutions for x in the set of equations
oL '
“ox =0. 2.3)
This result is in the following;
(B—pCyx=--(ub—0). 2.4)

Myers and Carter (4) gave the following theorem.

Theorem. Let x, and X, be distinct solutions to Equation (2. 4), using u, and p, respectively
and tet 9,.=73,.. If the matrix (B—uC) is negative definite, then 9,> $s:. If (B—mC) is
positive definite, then $,<F,. In addition, if B~—uC is negative definite, then B—p,C



cannot be negative definite.
Consider the quadratic form with matrix given by (B—pC), i.e.,
q—~w' (B—pQw.
Since B and C are symmetric rcal matrix, there exists a non-singular matrix S such
that

S’ BS=diag(Ay, Az *++++* yA)
and

S'CS=1,.
performing the transformation

w =S,
we have

g=v'diag(hi—p Ae—p, oo s Ae— . 2.5
The A% are merely the eigenvalues of the real symmetric matrix

D gBeDS =T, (2.6)
Here @ is the orthogonal matrix for which

QCQR=D;

and D, is the diagonal matrix containing the eigenvalues of C. The matrix _DZH‘) is a
diagonal matrix containing the reciprocals of the square roots of the eigenvalues of C.
From Equation (2.5), it is clear that we can insure negative definiteness of B—uC if p>
A, (positive definite if p<A,) where 1, A, - , A, are arranged in ascending order. So,
it becomes appearent this indeed defines the working region for g and, in fact any z;> 4,
vields x; which gives rise to an absolute maximum $,; (absolute minimum for g,<A)
conditional on a surface of secondary rsponse given by
Ju=co+x’e+x'Cx

3. Confidence Region for the Constrainted Stationary Point

If the true stationary point is x,=p

(B~4C) p—4-(ub—c)=3 @7
may not be (0,0, -+ ,0)’, where ¢ is a kX1 vector.

E(8) =

Cov(d)=E($8") =V.e,’+V,0.? = V. 2.8

Since Cov(B) and Cov(y) are known (Equation 2.1), we can calculate V.
The estimators of ¢,% o,” are in the following
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it distributed F(k, #,+n:— ¢ —¢s)
Hence 100(1—a)% confidence region of the stationary point in the constrainted dual



pesponse system is denoted by
S Vo<kF(h,m+n—¢—¢:; a).

Example Suppose we have the following data

X X2 Vs Vs
-1 —~1 52 13.9
1 -1 45 12.9
-1 1 30 13.1
1 1 46 13.6
—2 0 47 —
2 0 52 —
0 -2 49 -
0 2 54 —
-1.5 0 — 14.5
1.5 — 14. 4
0 -1.5 - 14.6
0 5 — 15.9
0 44 11.9
0 ] 42 15.8 with #,=#,=10.

Then we can calculate the followings

10, 0, 0, 12, 12, 0\
12, 0, 0 0,0
(X)X, 1= 12, 0, 0, 0
36, 4, 0|
sym. 36, 0
4
. 3571, 0, 0, —.2313, —.1071, O
. 0833, 0, 0, 0 O
_ . 0833, 0, 0. 0
.0703, .0291, O
sym. .0603, 0
.25
. 4932, 0, 0, —.2313, —.2313, 0
. 1176, 0, 0, 0 0
(X/X) = . 1176, 0 0o 0
.1854, .0867, O
sym. .1854, O
.25,

a,'=36.33, o.’=.8443
Pp=41+1. 5833 x;—. 91667 x2-+1. 875 x,°+2. 375 x.°+5. 75 £:%2
$,=11.464—. 7647 x,+. 2177 x.+1. 0848 1,2 +1. 4404 x,2+. 375 x,%;



T= ( 9979, O) ( 9187, —. 3949) BQ’ Dz(“%)=<—- 13264, 1. 45391)
0, .8108/ \.3949, .9187 1.45391, 2.88179/.
The eigenvalues of 7" are A,=—.7196, A.=3.4687.
The working region of g for maximizing J, is x> 3. 4687.
For u=4.1, from Equation (2.4) the stationary point is (—1.8555, —.5439).
From Equation (2.7) ¢’=(d,, dJ) is
dy=—2.5727%,+2. 1063x,—3. 6281
d,=2.1063x;—3. 5306x,+1. 9880.
Cov(®) = ( 0603x.°+. 25x,°+. 3500, . 2791x:1%, ) ot
. 25%,"+. 0603%.°+. 3500
+<3. 1166x,%+4. 2025x,°+. 0294, 5. 659921%; ) o i=V.
4. 2025x,°43. 1166x.*+. 0294
Hence the confidence region of this stationary point is in Fig. 1.
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