Uniform Convergence on Compact Spaces

Byong-In Seung

Kyonggi University, Seoul, Korea

I. Introduction

A uniform convergence of sequence of functions f_n on compact spaces plays an important role in analysis. W.C. Waterhouse [4] proved the following theorem:

Theorem. Let X and Y be compact spaces. Let f_1, f_2, \dots be functions from X to Y, with graphs $\Gamma(f_1)$, $\Gamma(f_2)$, \dots in $X \times Y$.

Then $\text{Lim } \Gamma(f_n)$ exists and is the graph of a function f if and only if f_n converges uniformly to f and f is continuous.

In this note we give the alternative proof of the above result and we prove a uniform convergence of equicontinuous sequence $\langle f_n \rangle$ on compact space by means of graph convergence.

Let $\langle S_n \rangle$ be a sequence of sets in some metric space X.

We define Lim sup (S_n) to be the set of points that S_n repeatedly approaches, i.e., the q in X such that every neighborhood of q meets infinitely many S_n . Similarly we let Lim inf (S_n) be the set of points that S_n ultimately stays close to, i.e., the q in X such that every neighborhood of q meets all but finitely many S_n . If these two sets concide, we define $\text{Lim }(S_n)$ to be their common value. Next we make some preliminary observations about these concepts. First, obviously $\text{Lim inf}(S_n) \subset \text{Lim sup}(S_n)$. Second, the definitions can be paraphrased as follows: a point q is in $\text{Lim inf}(S_n)$ iff there is a sequence of points P_n in S_n converging to q and q is in $\text{Lim sup}(S_n)$ iff there is a subsequence S_{n_i} with points p_i in S_n converging to q. Finally, $\text{Lim inf}(S_n)$ and $\text{Lim sup}(S_n)$ are always closed, so that $\text{Lim inf}(S_n)$ is closed when it exists.

Indeed, take x in the closure of Lim $\inf(S_n)$. Given $\varepsilon > 0$, we can find q in Lim $\inf(S_n)$ with $d(x,q) < \varepsilon/2$. For all sufficiently large m there is a point p_m in S_n with $d(q,p_m) < \varepsilon/2$, and then $d(x,p_m) < \varepsilon$; thus x is in Lim $\inf(S_n)$.

II. Main theorems

Theorem 1. Let X and Y be compact metric spaces. Let f_1 , f_2be functions from X to Y, with graphs $\Gamma(f_1)$, $\Gamma(f_2)$,in $X \times Y$. Then $Lim \Gamma(f_n)$ exists and is the graph of a function f if and only if f converges uniformly to f and f is continuous.

Proof. First, we show that f is continuous as $\Gamma(f) = \text{Lim } \Gamma(f_n)$, $\Gamma(f)$ is a closed set and a subset of the compact space $X \times Y$.

Let $\langle (x_n, f(x_n)) \rangle$ be a sequence in $\Gamma(f)$ such that sequence x_n converges to x. By compactness of $\Gamma(f)$, there exists a subsequence of a sequence $\langle (x_n, f(x_n)) \rangle$ which converge to a $(x,y) \in \Gamma(f)$, and so y=f(x). Hence f is continuous. Next, we show that f_n uniformly converges to f. If not, then for some $\epsilon > 0$ we have a subsequence f_{n_i} and x_i such that $d(f_{n_i}(x_n), f(x_n)) \geq \epsilon$. By compactness of $X \times Y$, we have a convergent subsequence $\langle (x_{k_i}, f_{n_{k_i}}(x_{k_i})) \rangle$ of a sequence $\langle (x_i, f_{n_i}(x_i)) \rangle$. If $(x_k, f_{n_{k_i}}(x_{k_i}))$ converges to $(x_k, f_{n_k}(x_k))$ belongs to $\Gamma(f)$, and so y=f(x). But as f is continuous, $\lim_{x_{k_i} \to x} f(x_{k_i}) = f(x)$. Hence $d(f_{n_{k_i}}(x_{k_i}), f(x_{k_i})) \longrightarrow 0$, which is absurd because they are supposedly at distance at least ϵ from each other.

Conversely let f_n be a uniformly converges to a continuous function f as $\lim_{n\to\infty}(x, f_n(x)) = (x, f(x))$, $\Gamma(f)$ is a subset of Lim inf $\Gamma(f_n)$, and we must show only Lim sup $\Gamma(f_n) \subset \Gamma(f)$.

If (x, y) is in the Lim sup (f_n) , there is a sequence $\langle (x_i, f_n, (x_i)) \rangle$ converging to (x, y), where $\langle (x_i, f_n, (x_i)) \rangle$ is in $\Gamma(f_n)$. But as $f_n \longrightarrow f$ uniformly, $\lim_{n \to \infty} x_i = x$ and $d(f_n, (x_i), f(x)) \leq d(f_n, (x_i), f(x_i)) + d(f(x_i), f(x)) \longrightarrow 0$, $(x, y) = (x, f(x)) \in \Gamma(f)$. Hence Lim sup $\Gamma(f_n) \subset \Gamma(f)$. Therefore we completes above the proof.

Theorem 2. Let X and Y be compact metric spaces. Let $\langle f_n \rangle$ be an equicontinuous sequence of functions to Y which converges pointwise to a function f. Then $\langle f_n \rangle$ converges uniformly to f.

Proof. If (x, y) is in the $\Gamma(f)$, $(x, y) = (x, f(x)) = \lim_{n \to \infty} (x, f_n(x))$. Hence we have $\Gamma(f) \subseteq \text{Lim inf } \Gamma(f)$. Next we show that $\text{Lim sup } \Gamma(f_n)$ is contained in $\Gamma(f)$. If (x, y) is in $\text{Lim sup } \Gamma(f_n)$, there is a sequence $<(x_i, f_{n_i}(x^i))>$ converging to it.

Choose $\varepsilon > 0$. By equicontinuity, there is a neighborhood N(x) of x such that $d(f_{n_i}(x_i), f_n(x)) < \varepsilon/2$ for all x_i in N(x) and all n. Choose N_1 so large that for all $n \ge N_1$, we have $d(f_n)$, $f(x) > \varepsilon/2$ and since $\lim x_i = x$, we may choose N_2 so large that x_i is in N(x) for all $n_i \ge N_2$. Hence let N be Max $\{N_1, N_2\}$.

For all $n_i \ge N$, we have

$$d(f_{n_i}(x_i), f(x)) \le d(f_{n_i}(x_i), f_{n_i}(x)) + d(f_{n_i}(x), f(x)) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

Hence $\langle f_{n_i}(x_i) \rangle$ converge to f(x). Since (x,y)=(x,f(x)), we have Lim sup $\Gamma(f_n) \subset \Gamma(f)$. It is easy from theorem 1. to see that $\langle f_n \rangle$ converges uniformly to f.

References

- [1] K. Kuratowski, Topology, 2 volumes. Academic Press, New York, 1966
- [2] H. L. Royden, Real analysis, 2nd ed. The Macmillan Co, New York, 1968
- [3] W. Rudin, Principles of mathematical analysis, Interscience Pub., New York, 1962
- [4] W.C. Waterhouse, Uniform convergence and graph convergence, Amer. Math. Monthly, Vol 78 (1973), 641-643