On Some Properties of Ordinal Space

By Yoon Kyo Chil

Kang Won National University, Chuncheon, Korea

Abstract: In this paper, we give several properties of ordinal spaces $[0, \Omega]$ and $[0, \Omega]$.

1. Introduction.

Let Γ be any ordinal number and let $(0, \Gamma)$ be a space with the topology generated by all sets of form $\{x|x>\alpha\}$ and $\{x|x<\beta\}$. We call this topological space the fordinal space $(0, \Gamma)$. Throughout, Ω denotes the first uncountable ordinal number, and we mainly investigate the properties of the space $(0, \Omega)$ and its subspace $(0, \Omega)$.

2. Some Properties of Ordinal Space.

Lemma 1. Every nonincreasing sequence of ordinal numbers is necessarily finite. (See [1], p. 43)

Lemma 2. Let $f: [0, \Omega[\longrightarrow [0, \Omega[$ be any map such that $f(\alpha) < \alpha$ for all $\alpha \ge some^{-\alpha} 0$. Then there exists a $\beta_0 < \Omega$ with the following property: As α increases, its image $f(\alpha)$ repeatedly returns to value below β_0 . In symbols: $\exists \beta_0 \ \forall \beta \ \exists \alpha \ge \beta$: $f(\alpha) \le \beta_0$. (See [1], p. 55)

We recall that a Hausdorff space X is paracompact if each open covering of X has an open nbd-finite refinement.

Proposition 1. The ordinal space $(0, \Omega)$ is paracompact.

Proof Let $\{U_{\alpha} | \alpha \in A\}$ be any open covering. Since the sets $]\lambda, \mu]$ form a basis, define $\varphi : [0, \Omega] \longrightarrow [0, \Omega]$ by associating with each $\beta \neq 0$ a $\varphi(\beta) < \beta$ such that $]\varphi(\beta), \beta] \subset U_{\alpha}$ for some α , and setting $\varphi(0) = 0$. By induction, construct a sequence $\beta_0 = \Omega$, $\beta_1 = \varphi(\Omega), \dots, \beta_n = \varphi(\beta_{n-1}), \dots$; then $\beta_0 > \beta_1 > \dots$. By Lemma 1, this terminates with some β_n . Because the process can not be continued, $\beta_n = 0$, and so $]0, \Omega] \subset \bigcup_{i=1}^n \beta_i, \beta_{i-1}$. Choosing a U_{α_i} containing each $]\beta_i, \beta_{i-1}]$ and some $U_{\alpha_i} \supset \{0\}$, we have a finite subcovering of $\{U_{\alpha} | \alpha \in A\}$, which is consequently an open nbd-finite refinement.

Proposition 2. The ordinal space $[0, \Omega[$ is not paracompact.

Proof The open covering by the sets $[0, \alpha[$, $0 < \alpha < \Omega$, has no open nbd-finite refinement. For, given any open refinement $\{U_{\alpha}\}$ define $\varphi : [0, \Omega[\longrightarrow [0, \Omega[$ as in proposition 1. Because of Lemma 2, there must be some β_0 such that $\forall \gamma \ \exists \beta > r : \varphi(\beta) \leq \beta_0$, and it

follows easily that β_0+1 is contained in infinitely many sets U_a .

Proposition 3. Let Γ be any ordinal number. Then the ordinal space $\{0, \Gamma[$ is normal. In particular, $\{0, \Omega[$ is normal.

Proof Let A and B be disjoint closed sets. For each $\alpha \in A$, the set $\{\beta < \alpha \mid \beta \in B\}$ has a supremum b_{α} (Lemma 1), which necessarily belongs to $\overline{B} = B$; note that $\exists b_{\alpha}, \alpha \exists$ is an open set containing no points of B. We thus get an open set $U = \bigcup \{\exists b_{\alpha}, \alpha \exists \mid \alpha \in A\} \supset A$, and similarly, an open $V = \bigcup \{\exists a_{\beta}, \beta \exists \beta \in B\} \supset B$. Now assuming $U \cap V \neq \phi$, then some $\exists b_{\alpha}, \alpha \exists \beta \in A$ and $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$. Since $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$ and $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$. Thus, $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$. Thus, $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$. Thus, $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$. Thus, $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$. Thus, $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$. Thus, $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$. Thus, $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$. Thus, $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$. Thus, $\exists a_{\beta}, \beta \in A$ are $\exists a_{\beta}, \beta \in A$.

A normal topological space in which each closed set is a G_{δ} is called perfectly normal. Then we have the following lemma.

Lemma 3. The space $(0, \Omega)$ is not perfectly normal.

Proof The singleton set $\{\Omega\}$ is a closed set in $\{0,\Omega\}$, but $\{\Omega\}$ is not G_{δ} -set. For, if $\{G_i | i \in N\}$ is arbitrary countable collection of open sets containing Ω , then because the sets $]\alpha,\beta]$ are a basis, $\forall i \ni \alpha_i < \Omega :]\alpha_i, \Omega] \subset G_i$. Being countable, the collection $\{\alpha_i | i \in N\}$ has an upper bound $\beta < \Omega$, so $\bigcap_{i=1}^n G_i \supset \beta,\Omega \supset \pm \{\Omega\}$. Hence, the space $\{0,\Omega\}$ is not perfectly normal.

Lemma 4. Every metric space is perfectly normal. (See [1], p. 186)

Lemma 5. (A. H. Stone) Every metric space is paracompact. (See [1], p. 186)

By the above three Lemmas, we can derive the following properties. Their proofs are clear.

Proposition 4. The space $(0, \Omega)$ is not metrizable.

Porposition 5. The space $\{0, \Omega\}$ is not metrizable.

In the proof of Proposition 1, we have the following result.

Proposition 6. The space $(0, \Omega)$ is compact.

Remark: We know that the usual topology on the real line R is metrizable, but not compact. And in Proposition 4 and Proposition 6, the space $[0, \Omega]$ is not metrizable, but compact. So we can say that compactness and metrizability are not related.

3. Application for perfect map.

Definition. A map $p: X \longrightarrow Y$ is called *perfect* if it is a continuous closed surjection and each fiber $p^{-1}(y)$ is compact.

Perfect maps preserve certain properties under inverse images. We know the following theorem.

Theorem. Let $p: X \longrightarrow Y$ be a perfect map. Then

- (1) If Y is paracompact, so also is X.
- (2) If Y is compact, so also is X.
- (3) If Y is Lindelöf, so also is X.
- (4) If Y is countably compact, so also is X.

In the above condition, if Y is normal, then is X normal? The answer is "No". In the below, we will give the counter example.

Lemma 6. Let X be arbitrary, Y be Hausdorff, and $f: X \longrightarrow Y$ be continuous. Then the graph of f is closed in $X \times Y$. (See [1], p. 140)

Lemma 7. The set $\{(\alpha, \alpha) | 0 \le \alpha < \Omega\}$ is closed in $(0, \Omega) \times (0, \Omega)$.

Proof Let $\varphi: [0, \Omega[\longrightarrow (0, \Omega)]$ be a map such that $\varphi(\alpha) = \alpha$ for all $0 \le \nu < \Omega$. Since $]\alpha, \beta]$ is a basis in $[0, \Omega]$, we must show $: \varphi^{-1}(]\alpha, \beta]$) is open. If $\beta \ne \Omega$, $\varphi^{-1}(]\alpha, \beta]) =]\alpha$, β , if $\beta = \Omega$, $\varphi^{-1}(]\alpha, \Omega]) =]\alpha$, Ω . In any case, $\varphi^{-1}(]\alpha, \beta]$) is open in $[0, \Omega[$, so φ is a continuous map. By Lemma 6, the graph of φ is closed in $[0, \Omega[\times[0, \Omega]], \Omega]$, that is, $\{(\alpha, \alpha) | 0 \le \alpha < \Omega\}$ is closed in $[0, \Omega[\times[0, \Omega]], \Omega[$.

Proposition 7. The space $[0, \Omega] \times [0, \Omega[$ is not normal.

Proof Let $A = \{(\Omega, n) | 0 \le n < \Omega\}$ and $B = \{(\alpha, \alpha) | 0 \le \alpha < \Omega\}$. Then A and B do not intersect closed sets in $[0, \Omega] \times [0, \Omega[$. Let U be any nbd of A; since for each fixed n the point $(\Omega, n) \in U$, there exists an ordinal $\alpha_n < \Omega$ such that $]\alpha_n, \Omega] \times \{n\} \subset U$. Then, since $\{\alpha_n | 0 \le n < \Omega\}$ is a countable collection, $\{\alpha_n\}$ has an upper bound $\alpha_0 < \Omega$ so that the "tube" $]\alpha_0, \Omega] \times [0, \Omega[\subset U]$. It follows that any nbd of $(\alpha_0 + 1, \alpha_0 + 1) \in B$ must contain points of U; therefore each $V \supset B$ will intersect U. Thus $[0, \Omega] \times [0, \Omega[$ is not normal.

Claim: If $p: X \longrightarrow Y$ is perfect and Y is normal, then X need not be normal.

Proof Let $p:(0,\Omega)\times(0,\Omega)$ be the projection. Then p is a obviously a perfect map. The space $[0,\Omega]$ is normal, but $[0,\Omega]\times(0,\Omega]$ is not normal.

Reference:

[1] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1970.