A Note on C-Semistratifiable (Mod K) Spaces

By Kyung Bee Kim, Hueng Ki Kim.

Cheongju University, Cheongju, Korea Dankuk University, Seoul, Korea

It was shown that a regular space is metrizable if and only if it is c-semistratifible wM space (2). In this paper we will show that a regular space is metrizable if and only if it is c-semistratifiable (mod K) wM-space. All spaces used here are T_2 -space and all undefined terms and notations may be found in [6].

A c-semistratification for a topological space X is a system $\{g(n, x) | x \in X, n=1, 2, \cdots\}$ of open subsets of X which satisfies the following conditions;

- (1) $x \in g(n, x)$
- (2) $g(n+1, x) \subset g(n, x)$
- (3) If A is a closed compact subset of X and $x \in X A$,

then there exists n such that $x \notin g(n, a)$ for each $a \in A$.

A space X is said to be c-semistratifiable if X has a c-semistratification.

Let (X, \mathfrak{T}) be a topological space and let g be a function $g: N \times X \rightarrow \mathfrak{T}$, then g is called a COC-function for X if it satisfies these two conditions;

- (1) $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for all $x \in X$
- (2) $g(n+1, x) \subset g(n, x)$ for all $n \in N$ and $x \in X$.

A topological space X is c-semistratifiable (mod K) space if there exists a compact covering \mathcal{K} of X and COC-function g for X such that; if $x \in K \in \mathcal{K}$, $K \subset U$ for a cocompact open set U in X and $\{x_n\}$ is a sequence of points in X with $x \in g(n, x_n)$ for all n, then $\{x_n\}$ is eventually in U.

Theorem 1. If X is a c-semistratifiable, then X is a c-semistratifiable (mod K).

Proof Since X is a c-semistratifiable, there exists a COC-function such that if $x \in g$ (n, x_n) for all $n \in N$ and $x \in U$ for a cocompact open set U, then $\{x_n\}$ is eventually in U. Hence if $x \in K \in \mathcal{K}$ for a compact covering K of X, $K \subset U$ and $\{x_n\}$ is a sequence of points in X with $x \in g(n, x_n)$ for all n, then $\{x_n\}$ is clearly eventually in U.

Let Q_1, Q_2, \cdots be a sequence of covers of X. If x and y are distinct points of X, then there exists $n \in \mathbb{N}$ such that $y \notin St^k(x, Q_n)$. A space with a sequence of open covers satisfying above conditions is said to have $\overline{G}_{\delta}(k)$ -diagonal and a space with a σ -closure

preserving separating closed cover is called a σ^* -space. The followings are clear from the results in [2].

Theorem 2. Any space with a $\bar{G}_{\delta}(1)$ -diagonal is c-semistratifiable (mod X).

Theorem 3. Every σ^{\sharp} -space is c-semistratifiable (mod K).

A topological space X is β -space provided that there is a COC-fuction that if $x \in g(n, x_n)$ for $n=1, 2, \cdots$, then $\{x_n\}$ has a cluster point. It was proved that a space is semistratifiable if and only if it is both a β -space and a $\sigma^{\#}$ -space [1] or a c-semistratifiable β -space [2]. But it remains true when c-semistratifiability is replaced by c-semistratifiable (mod K).

Theorem 4. A regular space X is semistratifiable if and only if it is a c-semistratifiable (mod K) β -space.

Proof A regular semistratifiable space is clearly a c-semistratifiable (mod K) β -space. For the converse, let X be a regular c-semistratifiable (mod K) space, then there is a COC-function g with $\operatorname{cl} g(n+1,x) \subset g(n,x)$ for all $x \in X$ and $n \in N$ such that if $x \in K \in \mathcal{K}$ for a compact covering \mathcal{K} of X, $K \subset U$ and $\{x_n\}$ is a sequence of points in X with $x \in g(n,x_n)$ for all n, then $\{x_n\}$ is eventually in U. Let $x,x_n \in X$ such that $x \in g(n,x_n)$ for $n=1,2,\cdots$. We will show that $\{x_n\}$ converges to x. The sequence $\{x_n\}$ has at least one cluster point x, moreover, every subsequence of $\{x_n\}$ also has at least one cluster point. Suppose y is a cluster point of $\{x_n\}$ distinct from x. Choose a subsequence $\{x_n\}$ of $\{x_n\}$ with $x_n \in g(i,y)$ for $i=1,2,\cdots$ and $x_n \neq x$ for all i. Since $\operatorname{cl} g(i+1,y) \subset g(i,y)$, y is the only one cluster point of $\{x_n\}$. It follows that $x_n \to y$, so that $C=\{y\} \cup \{x_n, | i=1,2,\cdots\}$ is compact. Since X is regular, there exists m such that $x \notin g(m,c)$. Take k > m, then $x \notin g(m,x_k) \supset g(k,x_k)$, which is a contradiction. Hence x is the unique cluster point of $\{x_n\}$. Since every subsequence of $\{x_n\}$ has a cluster point, $\{x_n\}$ converges to x. This completes the proof.

Let (X, \mathcal{T}) be a space and let g be a function from $N \times N$ into \mathcal{T} such that $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for each $x \in X$. The space X is a w Δ -space if $\{p, x_n\} \subset g(n, y_n)$ for $n=1, 2, \dots$, then the sequence $\{x_n\}$ has a cluster point. Also X is a wM-space if $p \in g(n, z_n)$, $g(n, y_n) \cap g(n, z_n) \neq \phi$, and $x_n \in g(n, y_n)$ for $n=1, 2, \dots$, then $\{x_n\}$ has a cluster point.

Corollary 5. A regular space is developable if and only if it is a c-semistratifiable (mod K) $w\Delta$ -space.

Proof Since any w Δ -space is a β -space, it is clear from Theorem 4 and [3].

Corollary 6. A regular space is metrizable if and only if it is a c-semistratifiable (mod K) wM-space.

Proof Note that every wM-space is a β -space and apply Theorem 4 and $\{2\}$.

References

- 1. R.E. Kodel, Moore spaces and w∆-spaces, Pac. J. Math 38(1971) 641-652
- 2. H.M. Martin, Metrizability of wM-spaces, Canad. J. Math 25(1973) 840-841
- 3. D. Burke, On p-space and w1-spaces, Pac. J. Math 35(1970) 285-296
- 4. P. Fletcher and W.F. Lindgren, On w Δ -spaces, w σ -spaces and Σ *-spaces Pac. J. Math 71(1977) 419-428
- 5. H.K. Kim, A note on c-semidevelopable (mod K) spaces, 강원대학 연구논문집 18집 (1979) 151-153
- 6. S. Willard, General topology, Addison Weslry, 1970