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1. Introduction

An element of order 2 in a group is called involution. An [important insight into the
structure of a finite group is obtained by studying its involutions and taeir centralizers.

Richard and Suzuki (1] proved that a finite 2-group containing only one involution is
cyclic or generalized quaternion group.

Dieudonne (2] and McDonald [3] characterized the automorphisms of linear group
GL(V) of finite dimensional R-space V over a ring & by the method of involutions.

The symmetric group s contains exactly two conjugacy classes of involutions which
are the set S; of all transpositions and the set S, of all products of two disjoint transpo-
sitions. If 4;€S5; and a,=S, are representatives of these conjugacy classes, then the
centralizer Cr,(a;)=<a;> X 23 and the centralizer C;,(a;) is a dihedral grcup of order 8.

In this paper, we shall study some properties of involutions in a group and prove the
following main theorem, which is the converse of the above statement, by utilizing the
properties of involutions. '

Theorem. Let the finite group G contain exactly two conjugacy classes of involutions and
let a;, a; be representatives of these classes. Suppose Ce(ar) ={a;)xX23 and Celaz) is a
dihedral group of order 8. Then G=3;.

2. Involutions

In this paper, G is a finite group.

Lemma 2.1. If a and b are distinct involutions in group G, then {a, by is isomorphic lo
a dihedral group.

Proof. Let u=ba and let # be of order n. Then,

{a, b)={x|x=u* or x=auka, k=0, +1, £2,}=<{u,alu"=1, ua=au™"),

which is a dihedral group.

Lemma 2.2. Let a and b be involutions in G.

(1) If ab is of odd order, then a and b are conjugate in G.

(2) If ab is of even oder 2m, then v=_>ab)™ is an involution end a,bsCs{v).



Proof. (1) Let order of ab be 2m-+1, then (ab)?»+1=1 and

1=(ab)"a(ba)”b, b=/{(ab)™alab)~™.
Therefore a and b are conjugate in G.

(2) Clearly, v=(ab)™ is an involution in G, and

awa=a(ab)"a=(ba)"=(a" b)) "= (ab) "= (ab)" =y,
b Wwb=b(ab)™b=(ba)" = (ab) "= (ab)"=v.
Therefore a, beCe(@).

Lemma 2.3. Suppose G contains a subgroup H of even order which does not contain all
involutions of G. If Ce(a)cH for any involution ac H, then any two involutions in G are
conjugate.

Proof. Let @ and & be involutions in G.

(case 1). aesH, beH. Suppose a and b are not conjugate. Then ab is of even order
by LEMMA 2.2, (1). Therefore there is an involution » such that a, b€Cs(v). Then,

H>Cg(a) 2Cq(a) NCe(b) 0.

Therefore a, beCs(@)cH. This leads to the contradiction that bH. Hence if aesH
and b2 H, then a and b are conjugate.

(case 2). aeH, beH. There exists an involution c& H by the assumption. Then a,c¢
are conjugate, and b, ¢ are conjugate by case 1, so a and b are conjugate.

(case 3). ae¢H, beH. The subgroup H contains an involution ¢, since H is of even
order. Then a, c are conjugate, and b, ¢ are conjugate, so ¢ and b are conjugate.

3. Proof of the Theorem

We shall now prove the main theorem according to the following lemmas. In this
paragraph, let G be the finite group which contains exactly two conjugacy classes Fi, Fy
of involutions, and let e;=F; and a,= F» be representatives of these classes, and suppose
C1=C¢(a)) =<ay) * Fy and Co=Cg(ay) is a dihedral group of order 8.

Let ¢;=|Cqlap!, i=1,2. Let S;, i=1,2, be the set of ordered pairs (x,3) with x
conjugate to a;, ¥y conjugate to a; and (xy)™=a; for some m. Let [S;|=s;.

Lemma 3.1. |G| =cis2+¢251.

Proof. Let S={(x,y){x is conjugate to &, and y is conjugate to az}. Then |Si=

LUGIH/e (UGl /c2). On the other hand, since for any (x,y) €S, x is not conjugate to y,
LEMMA 2.2 implies that for m=o0(xy)/2, where o(xy) is the order of =xy, (x»)™ is an
involution. Therefore (xy)™ is conjugate to either a; or a,, since G contains exactly two
conjugacy classes of involutions. '

Let Ti;={{x,y)€S|(xy)™ is conjugate to @; for some m}, i=1,2. Then S=T,UT,
Ti\nT.=¢, |Til=0GI|/ci)s;. Therefore,

UG/ UG [ed=(Gl/e)s1+ (|Gl /c2)s2, 1 Gl =c1527+ 281

Lemma 3.2. C; is a Sylow 2-subgroup of G.

Proof. Let P be a Sylow 2-subgroup of G containing C.,. Then there exists an involu-
tion ¢ in the center of P. Suppose ¢ be conjugate to a;, then |Cg(c)|=]C¢(a)]1=12. But



811Ce(c) |, since Cgle)>C; and {Col=8. This leads to the contradiction. Therefore ¢ is
conjugate to a;. Hence |G| <|P|<1Ce(c) |=|Col.

Therefore C,=P, that is, C; is a Sylow 2-subgroup of G.

Lemma 8.38. There is an involution asCy, which is conjugate to ) and a;eCg(a).

Proof. Let P be a Sylow 2-subgroup containing @;. Then ¢-'Pg=C; for some g¢geG,
since C; is a Sylow 2-subgroup of G. So, g-laig=a=C, Then a,eCs(a), clearly.

In the following lemmas, replacing @ by a conjugate element, we assume ¢;€C, and
a;=C; by LEMMA 3.3.

Lemma 3.4. (1) C, contains three classes of involutions, and if x is an involution in Ci,
x#ay, them x is not conjugate to xa; in Ci.

(2) For any involution x in Ci, x#a, exactly one of x and xay is conjugate to a; in G.

(3) s;=0.

Proof. (1) Since Ci=d{a1) X T3={a;> x{u, viud=12=1, vu=u%), we shall denote

Ci={1, u, % v, w, uP, @, uay,, u?a, va, uve; ua)
Then C; contains the following three classes of involutions,

Fi={a), Fo={v, uv, u?}, Fs={va;, wva,, u?va;)
Clearly, if x is an involution in C;, x+#4¢;, then x is not conjugate to xe; in C..

(2) Since x€Cy and x+a);, x€F, or x&F;. If xeF,, then xa;€F;, and conversely if xe
F;, then xa€ F,. Suppose both of x and xa; are conjugate to a; in G. Then all involutions
in Cy are conjugate to ¢;. But, since a;=C), this leads to the contradiction. So, at most
one of x and xa; is conjugate to 4;. Since G contains two conjugacy classes, exactly one
of x and xa; is conjugate to a;.

(3) Since a;<C; and a1 #a;, ax=F> or a;€ F;5. Suppose a;€(Cs. Then a; is conjugate to
elements of F3 in G. Therefore

Si={(x, DixeF, yeF; (x»"=1 for some m},
hence $,=1511=3-3=0.

Lemma 3.5. (1) C; contains three conjugacy classes of involutions, and if x is an involution
in Co x+#as, then x is comjugate to xay.

(2) s2=4.

(3) 1Gl=120.

Proof. (1) Since Co={u, viut=12=1, vu=udvd={1, 4, u?, u3, v, uv, 4%, 43y}, C, contains the
following three conjugacy classes of involutions,

Fi={u?} = (a3}, Fo={v,ut}, F3={ur,u’n}
If x is an involution in C,, x+#a, then x is conjugate to xa;=xu2.

(2) Since @1€C; and a1#a; a1€F; or ;€ F;3. For any x€F, and yeF; x and y are
not conjugate in G. For, if x and y were conjugate in G, then every z€F,U F3 would be
conjugate to a; and (za)™=a, or (za)™=a; for some m. It is impossible in Cs.

Suppose a,=F,. Then every element of F; is conjugate to @z in G. Therefore S.= {(x, )
|xeFy, yeFs, (xy)™=a, for some m}, hence s;=|S;|=2:2=4.



(3) By using LEMMA 3.1, we have |G|=120.

Lemma 3.6. (1) C; contains a non-cyclic group K of order 4 such that a;€ K and all the
involutions in K are comjugate in G.

2 Ce(K)=K.

(3) Ne(K) contains at least two Sylow 2-subgroups of G.

Proof. (1) If we use the notations in the proof of LEMMA 3.5, we know that C; con-
tains a non-cyclic group K of order 4 such that a;€ K, that is, K=/{1, as, uv, uvas}, and
all the involutions in K are conjugate in G.

(2) Let xC¢(X), then xlayx=a; hence x€(,. Therefore Co(K)=Cc,(K)=K.

(3) There exists an element x of G such that x~la;x+a; and x 'a;x€ K, since the three
elements of K different from identity are conjugate in G. Then x 'Cix+#C,, since ueC,
but u€x"1Cox,. and a,eCs(xtazx). So, x'Kx contains a; and xla;x which are elements
of K. Therefore x"1Kx=K, hence x€Ng(K). Since Ng(K)2C; Ng(K)=xNg(K)x>
x71C,x. That is Ng(K) contains at least two Sylow 2-subgroups of G.

Lemma 3.7. Ng(K)/K=Aut K=2%3 |Ng(K)|=24.

Proof. Let the mapping f: Ne(K)—Aut K be defined by f(g) (x)=g"'xg for geNg(X)
and xr= K. Then f is a group homomorphism.

Let S={x} UC,Ux"1C,x where x is an element of Ng(K) and C, x'Cox are Sylow
2-subgroups contained in Ng(X), which were obtained in the proof of LEMMA 3.6, (3).
Then we can show that f(S)=Aut K easily.

Therefore f is surjective homomorphism. Since Cg(K)=K, ker f=K. Therefore
Ne(K)/K=Aut K=J; Hence |Neg(K)|=123+|K|=6-4=24.

Lemma 3.8. [G: Ng(K)]=5, |Gl=5s

Proof. Since |G|=120 and |Ng(K)|=24, [G: Ng(K)]=5.

Let X be the coset space {Ng(K)g;li=1,2,+-,5}, and let Y(X) be the group of all
permutations on X. Then X (X)=Js.

Let the mapping f: G—2(X) be defined by f(@)(Ne(K)g)=N¢(K)g:g. Then f is a
group homomorphism, and ker f=x Qox‘lNa(K)x.

Now, there is an element x=G such that x la;xe X, since number of elements of the
conjugacy class containing a4, is c:=|G|/8=15. For this x, Ng(x'Kx) N Ng(K)={1}.
Then ker f= nx*‘Nc(K)x-—— {1}, since Ne(x'Kx)=x"1Ng(K)x.

Therefore f xs injective and surjective, since |Gj=120=|2(X)]. So, G=Z(X)=2s.
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