The Effect of ${\pi}$ Bonds on the Dipole Moments for Octahedral [M(Ⅲ)$A_3B_3$] Type Complexes [M(Ⅲ) = Ti(Ⅲ), V(Ⅲ), Cr(Ⅲ), Co(Ⅲ) and Ni(Ⅱ) ; A = O or N; B = N, Cl or S]

팔면체 [M(Ⅲ)$A_3B_3$] 형태 착물의 쌍극자모멘트에 대한 ${\pi}$ 결합의 영향 [M(Ⅲ) = Ti(Ⅲ), V(Ⅲ), Cr(Ⅲ), Fe(Ⅲ) 및 Ni(Ⅱ) ; A = O 또는 N ; B = N, S 또는 Cl]

  • Sang Woon Ahn (Department of Chemistry, Jeonbug National University) ;
  • En Suh Pakr (Department of Chemistry, Jeonbug National University) ;
  • Kee Hag Lee (Department of Chemistry Education, Kyunsang National University)
  • Published : 1981.04.30

Abstract

A method for calculation of the contribution of $\pi$ bonding molecular orbitals to the dipole moments for octahedral [M(III)$A_3B_3$] type complexes has been developed [M(III) = Ti(III), V(III), Cr(III), Fe(III) or Co(III); A = O or N; B = N, S or Cl]. The contribution of ${\pi}$ bonding molecular orbitals to the dipole moments is found to be smaller than that of ${\sigma}$ bonding molecular orbitals but this contribution may not be negligible even for chelate complexes in which delocalization of ${\pi}$ electron is assumed. The calculated dipole moments (u = $u_{\sigma}$ + $u_{\pi}$) are closer to the experimental values than those for the case where only ${\sigma}$ bonds are assumed to be formed.

팔면체 [M(Ⅲ)$A_3B_3$]형태 착물의 쌍극자모멘트에 ${\pi}$결합 분자궤도함수의 기여분을 계산하는 방법을 발전시켰다. [M(Ⅲ) = Ti(Ⅲ), V(Ⅲ), Cr(Ⅲ), Fe(Ⅲ), 또는 Co(Ⅲ); A = O 또는 N; B = N, S 또는 Cl] 쌍극자모멘트에 대한 ${\pi}$결합 분자궤도함수의 기여분은 ${\sigma}$결합 분자궤도함수의 기여분보다 작지만 비 편재화 ${\pi}$전자를 가지고 있는 킬레이트 착물에 까지도 무시할 수 없음이 발견되었다. 계산한 쌍극자모멘트가 ${\sigma}$결합 형성 만을 가정했을 때 보다 실험치에 가까웠다.

Keywords

References

  1. Prog. Chem. Ind. v.17 S. Ahn
  2. J. Korean Chem. Soc. v.22 S. Ahn
  3. J. Korean Chem. Soc. v.23 S. Ahn
  4. J. Korean Chem. Soc. v.23 S. Ahn
  5. Inorg. Chem. v.3 H. D. Bedon;S. M. Horner;S. Y. Tyee, Jr.
  6. J. Chem. Phys. v.20 M. Wolfsberg;L. Helmholz
  7. J. Chem. Phys. v.23 L. E. Orgel
  8. J. Chem. Phys. v.23 L. E. Orgel
  9. J. Chem. Phys. v.26 R. L. Belford;M. Calvin;G. Belford
  10. J. Chem. Soc. T. M. Dunn
  11. J. Inorg. Nucl. Chem. v.21 D. W. Barnun
  12. Inorg. Chem. v.2 T. S. Piper;R. L. Carlin
  13. J. Chem. Soc. v.33 G. W. A. Fowles;R. A. Hoodless
  14. J. Amer. Chem. Soc. v.84 R. C. Fay;T. S. Piper
  15. J. Chem. Soc. v.A R. J. H. Clark;M. L. Greenfield
  16. J. Amer. Chem. Soc. v.90 A. F. Schreiner;T. L. Brown
  17. Inorg. Chem. v.7 K. G. Caulton;R. F. Fenske
  18. Faraday Soc. v.19 J. Owen
  19. J. Chem. Phys. v.29 A. M. Maki;B. R. McGarvey
  20. J. Chem. Phys. v.35 D. Kivelson;R. Keiman
  21. Inorg. Chem. v.6 R. D. Willett;O. L. Liles, Jr.;C. Michelson
  22. Phys. Rev. v.130 S. Sugano;R. G. Shulman
  23. Phys. Rev. v.130 K. knox;R. G. Shulman;S. Sugano
  24. Phys. Rev. v.130 R. G. Shulman;S. Sugano
  25. J. Phys. Soc., Japan v.20 S. Sugano;Y. Tanabe
  26. J. Amer. Chem. Soc. v.87 D. R. Eaton
  27. Inorg. Chem. v.6 F. Rohrscheid;R. E. Ernst;R. H. Holm
  28. Inorg. Chem. v.6 F. Rohrscheid;R. E. Ernst;R. H. Holm
  29. J. Amer. Chem. Soc. v.89 F. Rohrscheid;R. E. Ernst;R. H. Holm
  30. J. Amer. Chem. Soc. v.90 J. A. McCloskey;A. M. Lawson;K. Tsuboyama;P. M. Krueger;R. N. Stillwell
  31. Transition Metal Chem v.4 H. B. Gray
  32. J. Amer. Chem. Soc. v.85 H. B. Gray;N. A. Beach
  33. J. Korean Chem. Soc. v.22 S. Ahn
  34. Inorg. Chem. v.3 H. D. Bedon;S. M. Horner;S. Y. Tyree Jr.
  35. Introduction to ligand fields B. N. Figgis
  36. Molecular Orbital Theory C. J. Ballhausen;H. B. Gray
  37. J. C. S. Dalton M. Das;S. E. Livingstone;S. W. Filipczuk;J. W. Hayes;D. V. Radford
  38. Inorg. Chem. v.4 L. Sacconni;P. Nannelli;U. Campigli
  39. J. Korean Chem. Soc. S. Ahn;J. S. Ko
  40. Aust. J. Chem. v.29 S. E. Livingstone;J. E. Oluka