DOI QR코드

DOI QR Code

The Nature of Water in Tactic Poly (2-Hydroxyethyl Methacrylate) Hydrogels

  • Kim, Eui-Hwan (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Jeon, Sang-Il (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Yoon, Sung-Chul (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Jhon, Mu-Shik (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • 발행 : 1981.06.30

초록

The hypothesis that three classes of water exist in hydrogels, namely X water (free water-like), Z-water (bound water-like), and Y water (interfacial water-like), has been verified and generally accepted. To further check the validity of this hypothesis and to study the nature of X, Y, and Z water as conformation changes, several experiments have been done using Tactic Poly(2-hydroxyethyl methacrylate) (P-HEMA) gels. Thermal expansively data for tactic P-HEMA gel was obtained. In each case of isotactic and syndiotactic P-HEMA, the higher water content gels showed an extremely sharp volume change at $0^{\circ}C$, indicating the presence of normal free water-like. Lower water content gels showed no anomalous change in thermal expansion, indicating that the water is bound water-like. The medium water content gels exhibited intermediate behavior. These results were also confirmed by bulk gel conductivity measurments. The differential scanning calorimeter(DSC) experiment was simply introduced to further verify the bound water-like quantities which was obtained by the method of dilatometry and specific conductivity. Observing the amounts of X, Y, and Z water with the change of tacticity, the similar content of bound water-like may be due to the same primary structure of isotactic and syndiotactic polymer and the difference in free and interfacial water-like content may be due to the difference in secondary and tertiary structure of tactic polymer. Therefore, as the polymer conformation varies, the free and interfacial water-like content will be varied. In order to demonstrate these concepts, Russel et al.'s CPK space-filling molecular models of isotactic and syndiotactic P-HEMA was utilized.

키워드

참고문헌

  1. Nature v.230 M. J. Tait;F. Franles
  2. Ann. N. U. Acad. Sci. v.125 J. F. Saunders;J. E. Flyms
  3. Ann. N. Y. Acad. Sci. v.125 J. F. Saunders;J. E. Flyms
  4. J. Amer. Chem. Soc. v.67 L. Pauling
  5. J. Phys. Chem. v.75 D. H. Rasmnssen;A. P. MacKenzie
  6. J. Phys. Chem. v.73 B. E. Pennock;H. P. Schwan
  7. J. Polym. Sci. Polym. Phys. Ed. v.11 S. Krishnamurthy;D. Mclntyre;E. R. Santee. Jr.;C. W. Wilson, III
  8. J. Biol. Chem. v.243 M. E. Fuller;W. S. Brey
  9. J. Amer. Chem. Soc. v.66 H. B. Bull
  10. Canadian J. Chem. v.48 M. Falk;A. G. Poole;C. F. Goymour
  11. Physical Chemistry E. A. Moelwyn-Hughes
  12. J. Polym. Sci. Polym. Phys. Ed. v.18 G. A. Russel;P. A. Hiltner;D. E. Gergonis;A. C. de Visser;J. D. Andrade
  13. The Theory of Rate Process S. Glasstone;K. J. Laidler;H. Eyring
  14. J. Colloid and Interface Sci. v.61 S. H. Choi;M. S. Jhon;J. D. Andrade
  15. Nature v.185 O. Wichterle;D. Lim
  16. Bull. Chem. Soc., Japan v.45 M. Aizawa;J. Mizuguchi;S. Suzuki;S. Hayashi;T. Suzuki;N. Mitomo;II, Toyama
  17. J. colloid Interface Sci. v.51 H. B. Lee;M. S. Jhon;J. D. Andrade
  18. Physical Techniques in Biological Research v.VI H. P. Schwan;W. L. Nastuk(ed.)
  19. Experiments in Physical Chemistry D. P. Shoemaker;C. W. Garland
  20. Handbook of Chemistry and Physics R. C. West(Ed.)
  21. Bull. Chem. Soc. Japan v.44 M. Aizawa;S. Suzuki
  22. J. Research of the National Bureau of Standards v.42 N. Bekkedahl
  23. ACS Symposium Series 31 Hydrogels for Medical and Related Applications D. E. Gregonis;C. M. Chen;J. D. Andrade;J. D. Andrade(Ed.)
  24. Polymer v.19 D. E. Gregonis;G. A. Russel;J. D. Andrade
  25. Nippon Kogaku Zassi v.91 J. Mizuguchi;M. Takahasi;M. Aizawa
  26. J. Biomed. Mater. Res. v.7 M. S. Jhon;J. D. Andrade
  27. J. Biomed. Mater. Res. v.7 S. D. Bruck

피인용 문헌

  1. ACRYLIC ACID/METHYL METHACRYLATE HYDROGELS. I. EFFECT OF COMPOSITION ON MECHANICAL AND THERMODYNAMIC PROPERTIES vol.37, pp.4, 2000, https://doi.org/10.1081/ma-100101095