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Abstract

The optimum design problem of a proposed oil pipeline network has been formulated as a
zero-one programming model to determine the optimum sizes of pipe and pump which mini-
mize the sum of material costs and operating costs during the 20 years of life span.

Applying to a real situation, the problem constitutes an assignment type zero-one program-
ming with 372 zero-one variables and 13 constraints. A heuristic algorithm has been developed
based on the modified Petersen algorithm utilizing the special form of the activity matrix.
The results showed impressive cost savings of 37 percent of the total cost from the original
proposal. '

1. Introduction

Transportation of oil through pipeline can be one of the efficient...energy saving...ways for
the distribution of oil from refineries to consuming areas. However, construction of a new
pipeline network involves a substantial amount of initial investment...which often prohibits its
realization...and thus the design of the network is usually the most critical for the project to
be economically feasible.

Classical analysis of pipeline network has been to find a set of flows and pressures in the
pipe network when supply and demand are known. {2] Linear programming has been applied
to the water supply system [1], {4], and optimum pipeline route along with the optimum
pump-pipe system has also been considered in [9], all of which are in static context.

2. Problem

The problem of pipeline design to be considered in this paper is to determine the optimum
sizes of pipe & pump which will minimize the total cost of fixed and variable costs during
the 20 years of life while satisfying given demand and supply, and passing the predeter-
mined pipeline route.

The inclusion of the pipeline operating cost is critical since it is the major portion of the
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total edst especially when the energy cost is relatively high.

The predetermined network consists of 6 pipeline sections and 6 pumping stations as given
in Fig. 1.

The circle denotes the pumping station or terminal, and the line denotes the pipeline sec-
tion which links the two adjacent pumping stations.

Fig. 1. Diagram for a Proposed Pipeline Network

The sources or supply points are stations 1 and 6. Station 7 functions only as a terminal
while other stations are the terminals as well as pumping. stations.

The problem then is to determine the pipe sizes of the 6 pipeline sections and the pump
sizes of the 6 pumping stations which will minimize the tofal cost while satisfying the engine-

ering and throughput requirements.

3. Model

It is assumed that the pipe sizes are chosen among the API* Specification 51X Grade X65.
It will also be assumed that the choice of pu_in_p head is restricted to the integer values
with 100 feet increments.
Additional assumptions are as follows:
— the throughputs for each lines are predetermined
— the same size of pipe will be used for each line section, i.e., pipe sizes, diameter,
and thickness are equal within the same section
— using engineering formula, friction head loss is assumed to be linearly proportional
to the distance from the pump.
To calculate friction head loss, friction factor, maximum allowable operating pressure, and

pumping horse power, the following engineering formulas were used:

Fanning Formula

.50, |,
Hmf- 30 032559 (1)

where
H;=friction head loss (ft/km)
f=friction factor
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Q=flow rate (Bbl/day)
H,=operating hour (hr/day)
d=inside diameter (inch).

The friction factor is determined by the Reynolds number which also is a function of the
pipe diameter, velocity of oil flow, density of oil, and viscosity of the fluid. The flow in the
oil pipeline falls into turbulent case, and the experimental relationship between the friction
factor and the Reynolds number for the turbulent flow is fitted to an equation,

f=0.05393R,—0. 2343 2)
where “R,” denoted the Reynolds number.

Maximum Allowable Operating Pressure
This formula calculates the allowable design stress of the pipe.
MAOP=2s-(T/D) (3)
where
s=0.72E
s=allowable stress (psi)
E=joint or seam strength which is equal to 1.0 for the pipe manufactured in
accordance with API—-5LX

T =thickness of pipe (inch)
D=outside diameter (inch)

Operating pressure and pumping horse power are calculated by the equations,
P=0.434S, - H oY)
and

Q-P )

BHP=0. 000017 - 15
»

where
S, =specific gravity, 0.84 was used for the light oil
H=head (ft)
BHP=pumping horse power
@=flow rate (Bbl/day)
P=pressure (psi)
E,=pump efficiency

Using the previous assumptions and the formulas, a zero-one programming model for the
optimum pipe and pump size selection problem can be formulated as follows:

Objective Function

minimize
Z= ilL.-gl(PCﬁT - OPPC) X
6 J
+2 Z[HEDC{HLi+100(;—1)}JHEDF;x Hy ©)
=1 j=



where
“* denotes the line section and pumping station
K=total number of alternatiVeVp‘ipé sizes
~ J=total number of alternative pump: heads
T=life span of the pipeline
L;=length of the i-th line section
PC;=pipe cost of the j-th assignment v
OPPC=operating (maintenance) cost of pipeline per unit length
HEDC;=head cost at the i-th station,
HL;=lowest allowable head limit at the i-th station
HEDF;=the number of actual operating years expressed in full utilization of
the pipeline section during the life.
X;;=zero-one variable for pipe size assignment
X;;=1, if the j-th size in the i-th section is selected
=(, otherwise
H;;=zero-one varialbe for head assignment
H;;=1, if the j-th head in the i-th station is selected
=0, otherwise

Constraints
1) Head Constraints

K .
.ZIIS1jX1j+HSI+Y1=H1 (7)
]=

K

_%Szjszj+HSZ+Y2=H2+Y1
i=

K

.21831'X3,'+HS3+Y3=H3+Y2

j=

K

.§S4iX4j+HS4+Y41=H4+Y3

=

K

.ZiS4iX4j+HS4+Y42=H4+Y5

j=

K

_ZiSstsi‘l'HSs'i‘Ys:Hs'l'Ys

=

K
3.SeiXey+ HSs+Y s=H,
j=

Y;>100 for i=1, 2, 3, 5, 6
Yau>=2100
Y4,>100
where o
S;;={friction head loss of the i-th {itie ‘for the j-th altérnative pipe size
HS;=static head of the i-th station :
Y;=suction pressure at the i:th station
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Y, =suction pressure of line section 3 at station 4
Y., =suction pressure of line section 5 at station 5
H;=total differential head (TDH) at the i-th station

J
Hi= SIHLA+100G—~1D1Hy
P2

2) Pipe Pressure Constraints

K

les(Tj/Di>X 1j>0.434-S,-H;- (1+ PALW) (8)
F=

K

_les((T,-/D,D X3;20.434- Sy (H,+Y 1) - (1+PALW)
F-

N .

_}:12s(T]-/D,-) X3;>0.434+S,+ (Hs+Y,) - (1+PALW)
-

K
£28(T}/D) Xy >0.434-S- (H,+ LX) 1 PALW)

=1

K
2.25(T3/D)) X5 >0.434- 5+ (Hs+Y) - (1+ PALW)
Pz

é 98(T;/D;) Xo;>0. 434S, Hy» (1+ PALW)
where
s=allowable stress
T;=thickness of the j-th pipe size
D;=outside diameter of the j-th pipe size
S, =specific gravity, 0.84
PALW =allowance for pipe pressure
3) Variable Restrictions
Xi=0or 1, for all i, j (9)
Hy;=0or 1, for all i, j

K
ZX,']'=1 for all 1
j=1

J
LH;=1 for all i

j=1
4. A Heuristic Algorithm

The model has been applied to the real situation as given in [6]. With the numbers of
alternative pipe and pump sizes to be 42 and 20, respectively, the model contains 372 zero-one

variables (X;;’s and H;;’s). The resulting “assignment-type” zero-one programming model can
be reformulated as

minimize Z=_ZJI ZJC,-,%,—,— (10)
iel je
Subject to Z:[ Ela’*,-,-x,-j<bk for k€K ) o an
iel je .
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x;=0o0r 1 for€l, jeJ

_Z‘,Ix,-,-=l for je/
Where I={Ipr I’l}v ]:{]p, ]h}
and

I,=index set for pipe sizes
I,=index set for pump sizes
J»=index set for pipeline sections
Ji=Iindex set for pumping stations
K=index set for constraints

With the specific applications given in [6], the overall structure of the model can be sum-

marized as in Fig. 2 where the cost coefficients are rearranged in increasing order within
each group of assignments, i.e., within one pipeline section or one pumping station, then the
resulting activity matrix can be decomposed into four parts; two with respect to the strict or

relative orderings of magnitude in the elements of the matrix, and two with respect to the
strictness of infeasibility, i.e., the first 7 strong constraints and the rest 6 weak constraints.

‘Strong

- . A
Constraints 1, ~>

‘Weak

Constraints Bap ~ ' A on =

Fig. 2. Structure of the Pipe-pump Size Assignment Problem

ARE

(L2

bys

Utilizing the specific structure of the model, a heuristic algorithm has been developed as

following:

Step 0 : The model was rearranged by sorting C;; in ascending orders for j=/; of each

=18
Set L; as the last elements of xij, 7€ for each i/,

Step 1: Assign 1 to the x;;, j&L; for each i/=I; which will provide the maximum feasi-
bility of strong constraints with less costs relative to x;;, j=J,, i<1,.

Step 2 : Feasibility Test

Delete the variable set of x;;, /=1, j=J, which will violate the strong const-
raints if 1’s are assigned to them. Obtain a free variable set N; for each i/,

which excludes the above deletion set.

Sept 3 : Assign 1 to the first elements of x;;, F&N; for each /=/,. If current assignments

are feasible, i.e., satisfy weak constraints also, go to Step 5.



Step 4:If L; is the first elements of j&J, for each /&I, and there was no current
optimum, then the problem is infeasible. Otherwise go to Step 6.

Step 5 : Fine Tuning
Fine-tuning the assignments of x;;, j& /4 {E1; by choosing the largest decrements
in costs while satisfying the feasibility.

Update the “current optimum” using the current assignments.

Step 6: If L; is the first elements of j=J, for each /<[, the current optimum is the
global optimum.

Step 7 : Select a new set L; by moving one ; of the assignment to the left which provides
the maximum feasibility if infeasibility exists or selects one which will reduce
the cost in maximum if no infeasibility exists.

Go to step 1.

For practical purposes a stopping criteria can also be added in Step 5, where the algorithm
will terminate when the ratio of the changes in the “previous” current optimum to current
optimum is less than a certain limit.

The key for the algorithm to be complete is the way to update the “new” L;. The algorithm
remains to be heuristic for this specific structure of the problem at this point. Nevertheless,
the efficiency of the algorithm can be envisaged by considering the substantial reductions in
the total number of combinations, i.e., from the Balasian combinations of 2%7% to 15° in this
particular case of 42 alternatives for each of 6 pipe sizes and 15 alternatives for each of 6
pump sizes.

5. Computational Results

Using the data from the real situation as given in (6), the heuristic algorithm solved the
problem efficiently in less than 100 seconds of CPU time on CYBER 174.

Table 1 shows the optimum pipe sizes, i.e., outside diameter and thickness, and pump sizes
in total differential head (TDH).

{Table 1> Optimum Pipe and Pump Size

Pipe Size Pump Size
Station or Line Number

Outside Diameter (inch) Thickness (inch) TDH (feet)

1 10 0.219 1600

2 16 0.188 1900

3 14 0.188 2600

4 22 0.219 1600

5 18 0.188 2100

6 22 0.219 1400

6. Concluding Remarks

The paper illustrated a real application of O.R. technique (zero-one programming to be



“gpecific) to the large scale investment project.

The results were remarkable. It showed impressive cost savings of 37 percent of the total

cost of the objective function while satisfying all the engineering constraints from the original

.proposal designed by a famed engineering company .in this field relying heavily on the engine-

ering handbooks.

Unquestionably, the results improved the economical and financial feasibilities of the project

greatly, which eventually made the project favorable in this particular case.

A mixed integer formulation with the pump sizes to be continuous, a case of variable pipe

sizes within each line section, routing problem with optimum number of pumping stations,

.completeness of the algorithm remain .to be the areas for further study.
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