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ABSTRACT

The problem of selection of a subset containing the largest of several slope para-
meters of regression equations is considered. The proposed selection procedure is based
on the weighted median estimators for regression parameters and the median of re-
scaled absolute residuals for scale parameters. Those estimators are compared with the
classical least squares estimators by a simulation study. A Monte Carlo comparison
is also made between the new procedure based on the weighted median estimators
and the procedure based on the least squares estimators. The results show that the
proposed procedure is quite robust with respect to the heaviness of distribution tails.

1. Introduction

Consider a set of % simple linear regression equations
Yi=ai+Bixiite;, j=1,, n; 1.1
i=1,, k
where a’s and B/’s are unknown regression parameters, X, **, Xin are known constants,
and e, -+, €. (i=1,-;k) are independent and identically distributed random variables
with a continuous and symmetric density function f. It is also assumed that the e.’s
have location and scale parameters 0 and o, respectively. We are interested in selecting

a subset containing the regression equation associated with the largest-slope parameter.
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In the subset selection procedure it is usually required that for any given rule R the
probability of a correct selection (CS) is at least a preassinged number P*, i.e.,
i‘I’lf P(CS|R)=P* 1.2

where P*e(—}e—, 1>. Thus we need the information of the configuration of 8/'s for which

the P* condition in (1.2) is satisfied. This configuration is called the least favorable
configuration (LFC). For nonparametric selection procedures based on ranks, it is well
known that the LFC is usually not given by the equi-parameter configuration (see Rizvi
and Woodworth (1970)). Because of this difficulty the nonparametric procedures based
on Hodges-Lehmann (H-L) type estimators are often suggested as robust procedures.

Assuming that the common variance o2 is known, Gupta and Huang (1977) proposed
a nonparametric procedure for the selection of regression equation with the largest slope
based on the H-L type estimators suggested by Adichie (1967). They used a robust pro-
cedure to estimate the regression parameter 8, but not for the scale parameter ¢. Thus,
if we estimate ¢ by any classical method based on the normal theory, the robustness
of the procedure may be lost.

In this paper we propose a robust selection procedure based on the weighted median
estimator (WME). The WME is a H-L type estimator in estimating the regression pa-
rameter 8, which has been studied by Scholz (1978) and Sievers (1978). To estimate
the scale parameter ¢, we use the median of rescaled absolute residuals, which is sup-
posed to be quite robust in estimating scale parameters.

Section 2 deals with the definitions and properties of the WME of « and 8. In Sect-
ion 3 the small sample properties of the WME are investigated by a comparison with
the LSE using a Monte Carlo experiment. The results show that the WME is much
more robust than the LSE for heavy tailed distributions. A robust scale estimator based
on rescaled absolute residuals is proposed and compared with the classical residual mean
square estimator. Section 4 contains the formulations for selecting the “best” regression
equation based on the WME and on the least squares estimator (LSE). We used a ra-
ther heuristic approach in making the subset selection rule based on the WME because
of the complexity of the distributions. Section 5 consists of a Monte Carlo study to com-
pare the selection procedures. The results also show that the WME procedure is quite

robust with respect to the heaviness of distribution tails.
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2. Regression Parameter Estimators

In this section we consider the simple linear regression model
YVi=a+pxite, i=1,+, n
instead of the model (1.1). Without loss of generality we assume that x;<<x,< .+« <x,
with

=1 3 m—zm>0.

i=

-

The classical LSE of 8 and « are given by
L (x—Z)(Yi— T,
Zn(xi—xn)z

and a=Y.—B%.,

Tor
Il

respectively. Alternative H-L type estimators of 8 based on suitable rank tests are pro-
posed by Theil (1950), Brown and Mood (1951), Adichie (1967), Sen (1968), Jaeckel
(1972), Scholz(1978), Sievers(1978), Kildea(1981), and others. In this paper we use
Scholz-Sievers procedure to estimate S,

Let T, be the weighted rank statistic defined by
To= 3 wip(Y;i—=Yi—8(x;—x)),

1<i<jsn
where ¢(+) is an indicator function such that ¢(f)=0 or 1 according as {<<Q or £>0.
Here the weights w;; are non-negative, and w:;=0 whenever x;=x;. Let w.. be the sum

of wi, i.e., w..=3 wi;. The H-L type estimator 8 of 8 based on T} is given by

i<j

B=(Bv+B0)/2 2.1
where

Bu=sup{B: To=>w../2},

Bo=inf {8 : Ty<w../2}.
The estimator 8 in (2.1) is equivalent to those of Sievers (1978) and Scholz (1978).
Note that for the special case w:;=1, the distribution of T}, is the same as that of two-
sample Wilcoxon statistic. But, we are in this paper interested in the weight w;;=x;— x;,
i<j, which is one of the optimal weights in the sense that it gives a minimum
variance.

To estimate a simultaneously with 8, we consider the rank statistic 7. defined by



108 B W R
Te=3% ¢(Yit YV, —B(xi+x) —2a),

and define the estimator & of a by
a=(ay+a.)/2

where
av=supla : Ta>n(n+1)/4},
ar=inf{a : T.<n(n+1)/4}.

The estimator & is then given by

d=med L {Vi+ YVi—frit )} 2.3

To find the explicit form of the § in (2.1) we consider (g) pairwise slopes

Si=(Y;=Y.)/(x;—x), 2.4
for {<j. Then T is a function of the slope Si; since ¢(Y;—Y:—g(x;—x:))=1 whenever
Sii> 8.

Consider the probability distribution on the (Z) points S;; by assigning probability

wi;/w.. to Sy, 1<j. Then § is the median of this probability distribution, and we call
B the WME of 8. Note that for the weights w;,=1, f is the median of the slopes S,
in (2.4), which was suggested by Theil (1950) and Sen(1968). For the weights w;,=
x;—% [ is the estimator originally considered by Jaeckel(1972). We now present the
invariance properties of a and ﬁin the following. The proof is similar to that of Adichie
(1967, Lemma 4.1 & 4.2).

Theorem 1. Let 3(Y) and @(Y) be the estimators defined by (2.1) and (2.2), res-
pectively. Then

D B(Y+a+bx)=4(Y)+b
i) @a(Y+a+bx)y=a(Y)+a

From this invariance property of 8, we can obtain the LFC in a subset selection pro-
cedure based on B, which will be discussed in Section 3.

We now state the asymptotic distributions of a and B in the following theorem. The
proof is similar to that of Adichie (1967, Theorem 5.3), and is omitted here. See also
Scholz (1978) and Sievers (1978) for the asymptotic normality of 8.

Theorem 2. Let & and 8 be defined by (2.2) and (2.1), respectively. Let w:;=x;~—x,

1<j, and let ?nz% 3 x; — X as n—oo, Assume that

i=1
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D [(f'/F)*dy <oo,

ii) max(x;—%.)%/n — 0, as n—oo,
1<i<n

n
iii) c,":% Zl (Xi—Zn)? — >0, as n—oo,
=

Then +7%(@—a, B—f) has a limiting bivariate normal distribution with mean €0,0)

and covariance matrix A2(f)3, where

2 £y _ 1
WO =Tx1rayT @.5)

[1 +%%/c? —J_c/cz]

—x/c? 1/c?

3. An Empirical Study on the Estimators

It is well known that the H-L type estimators discussed in Section 2 have desirable
asymptotic properties. In this section we investigate the small sample behaviors of the
WME. Moreover, to apply the estimators to the subet selection procedure we have to
estimate the scale parameter ¢, Thus not only the robustness of the slope estimators
but also a robust scale estimator is our major concern. The scale estimator can be view-
ed more or less as a location estimation problem for |7;|, wheré #; is the residual of
the 7-th observation.

However, the variance of 7; depends on the design point x;, It may be desirable to
rescale each 7; so that the variance of #; is approximately ¢? in the normal case. When

the LSE are used, the standard deviation of 7; is d.c where §; is given by

n—1 _ (xi_fn)z

n 2(xi—xa)?
We thus, as a heuristic estimator, employ the following scale estimator:
G=1.48 med{|r*|}, G.D

where the regression equation is fitted by WME, ».* is the rescaled r;, i.e., r*=7:/d,,

0i=

and the factor 1.48 makes & an approximately unbiased estimator of ¢ in normal case.
Holland and Welsch (1977) discussed the other aspect of scale estimator.
In normal case ¢? is usually estimated by the residual mean square
$2=2r2/(n—2), 6.2

using LSE to fit the regression equation.
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In order to investigate the small sample properties of WME and & we performed
Monte Carlo experiments with pseudo random variables for uniform, normal, double
exponential, SLASH (normal/uniform), and Cauchy distributions. In each case the
location and scale parameters used are 0 and 1, respectively. The observed values are
simulated from the model Yi=a+pBx:+e, i=1,--, n, with a=0, =1, and x;=i,
i=1,--, n, for n=5, 10, and 15. In each case 1000 observations are generated. The
uniform random numbers were generated by using the intrinsic subroutine RANDU in
PDP 11, and converted to normal variates by standardizing sum of twelve random
numbers. The inverse integral transformation was applied to generated double exponen-
tial and Cauchy samples. All computations in this paper are carried out on PDP 11.

Table 1 summarized the results of the Monte Carlo study about WME (& and 8)
and LSE (& and 5). The values are empirical means and variances (appeared in paren-
theses) of estimators. The relative efficiency (R.E.) of the two estimators is computed
as an inverse ratio of empirical variances.

For the uniform, normal, and double exponential distributions, the LSE and WME
are compatible. But the relative efficiency of the WME with respect to the LSE in SL-
ASH and Cauchy case is tremendously increased. The estimated values for the WME
are alse vety close to the true values, but not for the LSE.

The results of the empirical study for the performance of ¢ in (3.1) and s in (3. 2)
are presented in Table 2. From the table we can see that § is much more robust than
s. The relative efficiency of the two estimators, denoted by R.E. (4,s) in the table, is
again computed as an inverse ratio of empirical variances. The values of R.E. (G, )
are uniformly less than one up to double exponential, but significantly large for very

heavy tailed distributions.

Table 1 Empirical Means, Variances*, and Relative Efficiencies of the Estimators of
Regression Parameters

(true value: f=1, a=0)

n B(LSE) B(WME) RE.(4 B
5 1.01(0. 08) 1.01€0. 08) 0.94
Uniform 10 1. 00(0. 01) 1. 00(0.01) 0. 86
15 1. 00(0. 00) 1. 00€0. 00) 0. 86
5 0. 99(0. 10) 0.98(0.12) 0.94
Normal 10 1. 00(0. 01) 1. 00€0. 01) 0.87

15 1. 00€0. 00) 1. 00€0. 00D 0.92
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Table 1 (Continued)
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n B(LSE) A(WME) RE.(3, 8
5 1. 02(0. 22) 1. 03(0. 24) 0.91
Double Exp 10 1. 00€0. 03) 1. 00(0. 02) 1.15
15 1. 01(0.01) 1. 00<€0. 01) 1.19
5 0.56(817.) 0.71(336.) 3.
SLASH 10 1.16(12.7) 1.00(0.18) 73.
15 0.73(16.0) 0. 99(0. 04) 385.
5 1.51(374.) 1.44(94.5) 4.
Cauchy 10 0.89(339.) 1.00(0. 14) 2348.
15 1.70(197.) 1. 00€0. 03) 7915.
n &(LSE) &(WME) RE.(&, &)
5 —0. 03(0. 83) —0. 03¢0, 90) 0.92
Uniform 10 —0.02(0. 38) —0.01(0. 45) 0.85
15 0.03(0.23) 0.03(0.27) 0.85
5 0.06(1.09) 0.08(1.22) 0. 89
Normal 10 —0. 00(0. 45) —0.00(0.51) 0.88
15 0. 01(0. 30) 0. 01(0. 32) 0.93
5 —0.06(2.39) -0, 07(2. 60) 0.92
Double Exp. 10 —0.01(1.02) —0.02(0. 87) 1.18
15 —0.02(0. 56) —0.0100. 47) 1.20
5 0. 66(12639) 0.79(4819) 3.
SLASH 10 0.62( 339.) 0. 02(6. 62) 51.
15 2. 40(1866.) 0. 02(3. 06) 610.
5 0. 14(5055. ) 0. 97(505.) 10.
Cauchy 10 —2.08(11227) 0.02(6. 05) 1855.
15 —3.71(5758.) 0.00(1.94) 2973.

*Empirical variances appeared in parentheses

Table 2 Empirical Means, Variances*, and Relative Efficiencies of the Estimators of

Scale Parameter

n s 7 R.E.(3,9
5 0. 80(0. 09) 0. 94€0. 32) 0.27
Uniform 10 0. 85(0. 03) 0. 96(0. 14) 0.18
15 0. 85(0. 01) 1. 000. 09) 0.17
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Table 2 (Continued)

" s & R.E.(3,5)

5 0.93(0.15) 1. 08(0. 47) 0.32

Normal 10 0. 98(0. 06) 1.00(0. 16) 0.37

15 0. 98(0. 04) 0.99(0.11) 0.32

5 1. 22(0. 45) 1.30(0. 94) 0.48

Double Exp. 10 1. 35(0. 24) 1.110. 30) 0.85

15 1.37(0.15) 1.10(0.19) 0.82

5 13.70(3661.) 8.64(1776.) 2.

- SLASH 10 14.69(5587.) 2.70(2.93) 1905.

15 21. 94(8561.) 2.54(1.44) 5957.

5 12.11(5984.) 4.96(497.) 12.

Cauchy 10 20.10(37447.) 2.02(2.63) 14246.

15 22.21(38474.) 1.76(0. 85) 45368.

*Empirical variances appeared in parantheses
4. Subset Selection Procedures for the Largest Slope

We consider again the set of % regression equations in (1.1)
Yi=ai+Bikutes, j=1,-, n; =1+, k.
Here we assume that the regularity conditions in Theorem 2 hold for each i=1,-, 4.

We again use the weights wi;=x;;—xu, [ =1,+-, k. Let
Cinzle(xij—fin)z with J_Cfn:-l—i Xiiy “@n
n =1 n

and assume that c¢..2—¢2>0 as n—co, for i=1,--, k.

Let Beiy<Brar<<-++<Busy denote the ordered 8/s, and let c%uny, €%, and z¢, be the
values of c¢i.% ¢, and the regression equation associated with S respectively. Here we
are interested in selecting a subset which contains the “best” population associated with
Bowa.

Assuming that the common variance ¢% is known, Gupta and Huang (1977) have
suggested the following rule:

R : Select r; if and only if

B*>max(B*— j’% Ve 7)), “@.2

1S5k
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where §:* is the Adichie estimator for 8: with Wilcoxon scores or normal scores, and
d=d(k, P*,n)>0 is chosen to satisfy the P*-condition. For conservative values of d
they suggested the inequality

d*c—au
V1 —a,t

where gi=cd/(cd+cd) with ConSCen<<cwy, d*=40.864d or d according as Wilco-

P* > S:d)’*‘l( ) 4o (u)

xon scores or normal scores are used, and @(-) is the cdf of standard normal. (Note
that we use the notation ¢ for both standard deviation and scale parameter without
confusion.)

The rule R in (4.2) is not useful for practical purpose in two aspects. Firstly the
scale parameter ¢ should in most cases be estimated from the data. Secondly if the
usual pooled sample estimator s? to estimate ¢2 is used, then the procedure may be too
conservative to discriminate bad populations. The numerical solution of the Adichie esti-
mator is not so simple as that of the WME. Considering these aspects, we propose the
following rule:

R, : Select #; if and only if

a o d.é
> P U
Fizmax(p——=

‘\/Cin_z"_Cjn_z), (4 3)

where d,=d,(k, P*,n,c,, -, ¢)>>0 is determined so that the P*—condition is satisfied
and & is the pooled sample estimate of ¢ defined by 1.48med {|r,*|, j=1,, #n;i=
1,-+-, k}. To obtain the exact values of d; we have to know the exact distribution of
8 and &, We therefore try to find approximate values of d,, assuming that the error
term has a normal distribution.

Using the stochastic ordering property of the distribution of B: from Theorem 1, it

can be easily shown that the infimum of the probablity of CS occurs when Gy=-++=ps
=@B. We thus have
inf P(CS|R)
=inf P{fu> max Bo— ii/lz Veun Pt Can 8 | Bi="+=Be=§},
1<i<k~-i »n

where the infimum is over 8 and all permutations of (cy, -, ¢x), and B is the estim-
ator of f;. Using the same argument as in Gupta and Huang (1977), we have for
large n,

inf P(CS|R,)
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— _AG L 118
=inf P{Y,<< NGk J=1,00 B—1]81="= 04}

where

v VB —ha)
VR ) ey P Cam ™D
and A2(f) is defined by (2.5). Note that under the assumption of normality, A*(f)=

o27/3. From Theorem 2 the asymptotic distributions of Y,'s are standard normal with

correlation matrix {p;} defined by pi;=1 or a:a; as i=j or i#j, where
2
a;z[l—!——cﬁk)T]‘“Z, =1, 00, B—1.
Cid

Therefore from Gupta and Huang (1976) we have for large #,

inf P(CS|Ry)

— o oo k-1 dl*ﬁ'*—a,-u -

= 7 Ho(Ha=) doawde. @), .9

-0 j=1

where d\*= v3/zd,, 6*=d/o, and Q,*(6*) denotes the cdf of G*,
We now consider the selection rule based on the LSE, which can be given by
R, : Select z; if and only if

Bi>max(§;— j% Vein 2+ Cin72), (4.5)

1<jsk

where d,=d,(k, P*,c,,-++, ¢.) is determined to satisfy the P*—condition and s? is the
usual pooled sample unbiased estimator for ¢2. Then by the same argument as above,
we can obtain

inf P(CS|R,)
(7§ 0B d060dQ.o, “.6)

0 —o0 j=1

where Q.(s) is the cdf of x,/ +/v variate with y=k(n—2). For special values of a; we
can find tables of d,. For example when a;=1/ 4%, j=1,+, k, Gupta and Sobel (1957)
provides tables of +72d, for P*=0.75, 0.90, 0.95, 0.975, 0.99, For a,2=«-=a:_,®
=p, we may use the tables for multivariate ¢ distribution in Krishnaiah and Armitage
(1966).

Now we may intuitively consider the use of dy in (4.6) for d;* in (4.4). Because
of the behavior of & which was discussed in section 3, the use of d, for d,* may make
the rule R, fail to meet the P*—condition. But it is expected that the number of non-

best regression equations in the selected subset is considerably decreased when there are
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significant differences in 8’s. The results of a small sample Monte Carlo study in the

next section demonstrate this point.

5. An Empirical Study on the Procedures

In this section we present a Monte Carlo study comparing the two selection procedu-
res, the LSE procedure based on the rule R, and the WME procedure based on the
rule R,, in their ability to select the best equation and also to eliminate non-best equa-
tions. Since the selection rule R, is adjusted to be approximately equivalent to the rule
R, under the assumption of normality, it is expected that the two rules are much alike
in their behavior for medium tailed distributions. For short tailed distributions the W-
ME is less efficient than the LSE as seen in Section 3. We therefore expect that the
rule R, is less efficient than the rule R, in their ability to eliminate non-best equations.
But the reverse is expected to hold for heavy tailed distributions, even though the rule
R, fails to satisfy the P*-condition.

In our Monte Carole study we compared the two rules on the uniform U(—1.5, 1.5),
standard normal, double exponential, and Cauchy distributions. The random variates
are generated as those in Section 3. To investigate the performance of the two rules
we considered the case when the slope parameters are equally spaced, i.e. Bi=f+
(—1)dg, i=1,---, k, where §>>0 is a given constant and ¢ is the standard deviation
of each distribution. (For Cauchy distribution, ¢=2 is used just for convenience.) The
parameters used in our simulation are £=5, #=10, a;i=0 (@=1,---, &), Bo=1, and xy;
=i for j=1,+, n;i=1,+, k. The values of § chosen in this simulation study are
0c¢*=0.0, 0.5, 2.0, and 4.0, where c*=2(x;—%)2

Table 3 presents the number of times that each equation is selected for the configu-
ration (B8, Be+d0, >+, Bo+(k—1)d0) in 500 replications. The entries in Table 3 are based
on separate simulations for each value of dc*=0,0, 0.5, 2.0, and 4.0. The average of
each column divided by 500 can be interpreted as the sample estimate of the expected
proportion of the selected equations, which is denoted by EP in the table. The values
of EP are rounded at the third decimal place.

Note that the values of EP for §=0.0 in Table 3 is the empirical P*, i.e. the empi-
rical probability of CS for LFC. For the short tailed uniform distribution there are no

significant differences in the values of empirical P* between the two rules. For the
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normal case empirical P* values of the rule K, are slightly lower than those of the
rule R,. The maximum difference is about 0.04 appeared at P*=0.75. In the cases of
double exponential and Cauchy distributions, the empirical P* values of the rule R,
show that the P*-condition is significantly violated. The maximum difference is about
0. 11 occurred at P*=0.75 in Cauchy.

In terms of the probability of CS for the cases dc*>>0.5, there are no significant
differences between the two rules.

We now invéstigate the efficiency of the two rules in terms of the size of the selec-
ted subset. As a measure of “goodness” of a subset selection procedure, we use the
ratio of the expected number populations E(S) to the probability of a correct selection
P(CS), i.e. E(S)/P(CS). (See, for example, McDonald (1977) for the definition of
“goodness” of a procedure.) A rule R is said to be “better” than a rule R* if the ratio
for R is less than the corresponding ratio for R*. We may thus define the relative
efficiency of the procedure R, relative to the procedure R, as an inverse ratio of the

measures of goodness, i.e.

E(SIRy)
E(S|RD

P(CSIRY)

e(RI,RZ): P(CS]RZ) .

X

Note that this relative efficiency depends on the number of equations %, and the boun-
ds are

1/k<e(Ry, Rp) <k,
For example, when R; always selects only the best equation and R, selects all the eq-
uations, the value of e(R,, R;) is k. The empirical relative efficiencies of the rule R,
relative to the rule R, are computed from Table 3 and summarized in Table 4.

For the uniform distribution the empirical relative efficiencies of R, relative to R, are
less than 1 except one place, but in most cases greater than 0.9. In normal case the
efficiencies of the two rules are almost the same. For the double exponential distribu-
ti on the empirical e(R,, R,) is uniformly greater than 1, but in most cases less than
1.2. For the Cauchy distribution which has very heavy tails, the efficiency of the rule
R, is much higher than that of the rule R, as expected. The maximum value of the
empirical e(R,, R;) is 2.652, which is a significant improvement in its efficiency consi-
dering that the upper bound of e(R;, R;) is 5 in this empirical study.

As a conclusion, the WME procedure based on the rule R, performs significantly

better than the LSE procedure based on the rule R, for heavy tailed distributions.
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Table 3 also shows that the WME procedure is quite robust in terms of the underlying

distributions.

Table 3 Number of Times Selected for the Equally Spaced Configuration g;=g,+
(i—1)dc in 500 Replications

R, ‘ R,

N’* 75 .90 .95 .975 .99‘ 75 .90 .95 .975 .99

Uniform with dc*=0. 0

1 355 440 475 488 495 380 450 469 481 487
2 369 443 478 489 495 386 448 470 483 491
3 367 446 469 481 495 383 448 476 482 491
4 356 443 467 488 491 366 447 469 476 486
5 371 439 472 486 498 385 446 476 485 493
EP .73 .88 .94 .97 .99 .76 .90 .94 . 96 .98

Uniform with dc*=0.5

1 156 265 346 387 440 189 325 382 416 448
2 231 348 410 444 477 262 381 428 453 468
3 316 421 450 469 486 348 434 453 472 485
4 392 464 480 487 497 401 463 480 490 497
5 467 494 500 500 500 465 492 493 498 500
EP .63 .80 .87 .91 .96 .67 .84 .89 .93 .96

Uniform with dc*=2.0

1 0 0 0 0 1 0 0 1 2 9
2 0 2 3 10 35 2 6 25 53 115
3 43 90 137 209 270 63 147 211 275 331
4 229 327 375 420 457 271 358 407 434 469
5 500 500 500 500 500 499 500 500 500 500
EP .31 .37 .41 .46 .51 .33 .40 .46 .51 . 60

Uniform with dc*=4,0

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 2 0 0 0 3 13
4 30 83 125 186 258 58 144 202 249 316
5 500 500 500 500 500 500 500 500 500 500

EP .21 .23 .25 .27 .30 .22 .26 .28 .30 .33
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Table 3 (Continued)
R, R,
P*

i .75 .90 .95 .975 .99 .75 .90 .95 . 975 .99

Normal with dc*=0.0
1 372 455 480 491 493 357 438 471 485 491
2 371 459 481 491 497 358 436 472 483 490
3 373 460 480 492 498 357 435 468 481 491
4 365 439 474 489 496 350 432 465 482 488
5 390 452 476 487 496 362 449 466 481 486
EP .75 .91 .96 .98 .99 .71 .88 .94 .96 .98

Normal with dc*=0.5
1 163 284 351 403 450 153 273 334 391 432
2 246 358 412 454 477 240 344 388 440 467
3 318 427 454 479 493 313 403 435 462 489
4 401 451 474 488 497 379 453 468 481 492
5 463 489 497 498 500 464 484 489 494 498
Ep .64 .80 .88 .93 .97 .62 .78 .85 .91 .95

Normal with § ¢*=2.0

1 0 1 1 0 0 1 5
2 7 23 45 0 15 30 50
3 25 83 135 192 271 27 92 143 200 271
4 232 334 397 435 460 226 336 376 408 445
5 497 499 500 500 500 496 498 498 499 500
EP .30 .37 .42 .46 .51 .30 .37 .41 .46 .51

Normal with dc*=4.0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 1 2 4
4 38 88 135 185 254 41 83 137 184 250
5 500 500 500 500 500 500 500 500 500 500
EP .22 .24 .25 .27 .30 .22 .23 .26 .27 .30

Double Exponential with dc*=0.0

1 363 445 479 488 494 325 403 438 461 480
2 378 442 473 484 495 347 414 445 463 479
3 375 452 471 482 489 345 404 448 465 478
4 381 447 474 489 494 343 414 447 464 475
5 375 448 472 481 493 346 411 446 465 477
EP .75 .89 .95 .97 .99 .68 .82 .90 .93 .96
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Table 3 (Continued)
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3 1 R,
P*

}\ .75 .90 .95 .975 .99 I .75 90 .95 . 975 .99

Double Exponential with dc*=0.5
1 146 271 343 390 433 95 189 244 296 350
2 213 342 398 445 466 160 264 325 372 411
3 306 413 456 475 488 250 343 394 428 451
4 395 456 478 488 495 335 419 450 468 485
5 470 488 496 496 499 453 497 491 494 495
EP .61 .79 .81 .92 .95 .52 .68 .76 .82 .88

Double Exponential with dc*=2.0
1 0 0 1 6 0 0 0 0
2 3 10 22 48 0 2 10 24
3 32 79 127 176 260 16 40 62 91 136
4 236 360 401 438 464 165 252 314 359 402
5 496 498 500 500 500 496 499 500 500 500
EP .31 .38 .42 .45 .51 .27 .32 .35 .38 .42

Double Exponential with dc*=4.0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 2 0 0
4 19 73 129 194 256 11 37 63 98 138
5 500 500 500 500 500 500 500 500 500 500
EP .21 .23 .25 .28 .30 .20 .21 .23 .24 .26

Cauchy with dc*=0.0
1 353 424 455 467 486 306 366 393 421 438
2 355 417 444 462 4387 311 364 399 427 452
3 372 426 459 470 488 303 379 416 441 450
4 365 427 459 472 488 302 389 414 430 448
5 362 421 455 466 439 308 369 411 428 446
EP .72 .85 .91 .93 .97 .61 .75 .81 .86 .89
Cauchy with dc*=0.5

1 340 409 438 471 488 131 225 267 311 362
2 359 413 441 465 486 203 281 314 358 389
3 374 431 459 473 490 259 343 385 410 439
4 402 443 470 478 492 350 404 427 447 468
5 412 454 472 483 498 401 442 460 468 474
EP .75 .86 .91 .95 .98 .54 .68 .74 .80 .85



120 % B W3
R, R,
P*
i .75 .90 .95 . 975 .99 .75 .90 .95 . 975 .99
Cauchy with dc*=2.0
1 161 237 295 332 372 5 5 13 15
2 210 303 348 390 428 14 21 33 52
3 282 359 409 435 471 40 81 114 157 188
4 372 436 461 476 492 192 283 322 366 397
5 449 473 483 490 499 486 492 493 493 496
EP .59 .72 .80 .85 .90 .29 .35 .38 .42 .46
Cauchy with dc*=4.0
1 96 139 174 205 239 1 1
2 128 193 233 264 306 3 3 4
3 207 284 324 353 377 9 11 21
4 328 392 420 451 466 46 88 126 161 200
5 462 479 487 491 498 492 494 495 496 498
EP .49 .59 .66 .71 .75 .22 .24 .25 .27 .30
Table 4 Empirical Relative Efficiencies e(R;, R,) based on 500 Replications
P*
ac* 0.75 0.90 0.95 0.975 0.99
Uniform
0.5 0.934 0.947 0. 964 0.978 1.001
2.0 0.923 0. 909 0. 887 0. 901 0. 886
4.0 0. 950 0. 905 0. 890 0. 904 0.914
Normal
0.5 1.029 1.016 1.018 1.016 1.012
2.0 1. 005 0. 986 1. 003 1. 009 1. 005
4.0 0. 994 1. 009 0. 995 0. 999 1. 000
Double Exponenential
0.5 1.140 1.141 1.129 1.110 1.078
2.0 1.129 1.188 1.178 1.184 1.203
4.0 1.016 1. 067 1.117 1.161 1.188
Cauchy
0.5 1. 367 1.235 1.199 1.152 1. 096
2.0 2.192 2,149 2.133 2.011 1.959 *
4.0 2.381 2.590 2.626 2.652° 2.605
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