On Minimal Sufficient Statistics[†]

Seiji Nabeya*

1. Introduction

Let (X,A) be a measurable space, i.e. X is a non-empty set and $\mathscr A$ is a σ -field of subsets of X. Let Ω be a parameter space and P be a family of probability measures P_{θ} , $\theta \in \Omega$ defined on $(X,\mathscr A)$.

Let \mathscr{A}_0 be a sub- σ -field of \mathscr{A} , and let $\theta \in \mathcal{Q}$ and $A \in \mathscr{A}$ be fixed. Then we can define the conditional probability P_{θ} $(A|\mathscr{A}_0,x)$ of A given \mathscr{A}_0 as an \mathscr{A}_0 -measurable function defined on X which satisfies

$$P_{\theta}(A \cap A_0) = \int_{A_0} P_{\theta}(A \mid \mathcal{A}_0, x) P_{\theta}(dx)$$

for any $A_0 \in \mathscr{A}_0$ $P_{\theta}(A|\mathscr{A}_0,.)$ is defined uniquely up to $(\mathscr{A}_0,P_{\theta})$ -equivalence.

If we can define $P_{\theta}(A|\mathcal{A}_0,.)$ for every $A \in \mathcal{A}$ independent of $\theta \in \mathcal{Q}$, then we denote it by $P_{\mathcal{Q}}(A|\mathcal{A}_0,.)$ and in this case \mathcal{A}_0 is called a sufficient σ -field of \mathcal{A} .

Next we shall define a necessary σ -field. For this purpose we first introduce the definition of the contraction. A set $N \in \mathcal{A}$ is termed an (\mathcal{A},P) -null set, if $P_{\theta}(N)=0$ holds for all $\theta \in \mathcal{Q}$. Let \mathcal{A}_0 and \mathcal{A}_1 be two sub- σ -fields of \mathcal{A} . If for every $A_0 \in \mathcal{A}_1$ there exists an $A_1 \in \mathcal{A}_1$ such that the symmetric difference

$$A_0 \Delta A_1 = (A_0 - A_1) \cup (A_1 - A_0)$$

is an (\mathcal{A}, P) -null set, then we call \mathcal{A}_0 a contraction of \mathcal{A}_1 and we denote it by $\mathcal{A}_0 \subset \mathcal{A}_1(\mathcal{A}, P)$.

If a sub- σ -field \mathcal{A}_0 of \mathcal{A} is a contraction of every sufficient σ -field of \mathcal{A} , then we call \mathcal{A}_0 a necessary σ -field of \mathcal{A} . If a sufficient σ -field \mathcal{A}_0 is also necessary, we call \mathcal{A}_0 a necessary and sufficient σ -field or a minimal sufficient σ -field. These notions were introduced by Bahadur (1954) who established the existence of a minimal sufficient σ -field under the assumption that P is dominated by a σ -finite measure.

Let Y be another non-empty set with or without its σ -field given in advance. If Y is not endowed with its σ -field in advance, then following Lehmann and Scheffé (1950) or Bahadur (1954) any mapping t from X into Y is called a statistic. A statistic of this type is called a statistic of the first kind or an S_1 -statistic from (X, \mathscr{A}) into Y. Throughout the paper we define in this case the σ -field \mathscr{B}^* of Y as

[†] Based on the Special lecture delivered for Korean Statistical Society Commemorating its 10th Anniversary on Nov. 2, 1981.

^{*} Hitotsubashi University

$$\mathcal{B}^* = \{B : B \subset Y, \ t^{-1}B \in \mathcal{A}\} \tag{1}$$

where t^{-1} denotes the inverse image. If furthermore the induced σ -field

$$t^{-1}\mathcal{B}^* = \{t^{-1}B : B \in \mathcal{B}^*\}$$

is a sufficient σ -field of A, then we call t an S_1 -sufficient statistic from (X, \mathscr{A}) into Y.

On the other hand if Y is endowed with its σ -field \mathcal{B} given in advance, then following Halmos and Savage (1949) any $\mathscr{A} \to \mathscr{B}$ measurable mapping t from X into Y is called a statistic. A statistic of this type is called a statistic of the second kind or an S_2 -statistic from (X,\mathscr{A}) into (Y,\mathscr{B}) . If t is an S_2 -statistic from (X,\mathscr{A}) into (Y,\mathscr{B}) and if the induced σ -field

$$t^{-1}\mathcal{B} = \{t^{-1}B : B \in \mathcal{B}\}$$

is a sufficient σ -field of \mathscr{A} , then we call t an S_2 -sufficient statistic from (X,\mathscr{A}) into (Y,\mathscr{B}) .

Clearly, if t is an S_1 -statistic from (X, \mathcal{A}) into Y, then t is also an S_2 -statistic from (X, \mathcal{A}) into (Y, \mathcal{B}^*) . If furthermore t is an S_1 -sufficient statistic from (X, \mathcal{A}) into (Y, \mathcal{B}^*) .

Let t be an S_2 -sufficient statistic from (X, \mathcal{A}) into (Y, \mathcal{B}) . According to Lemma 2 of Halmos and Savage (1949), the conditional probability $P_{\mathfrak{Q}}(A/t^{-1}\mathcal{B}, x)$ of A given $t^{-1}\mathcal{B}$ can be identified as $P_{\mathfrak{Q}}(A/t(x))$, where $P_{\mathfrak{Q}}(A/y)$ is a \mathcal{B} -measurable function defined on Y which statisfies

$$P_{\theta}(A \cap t^{-1}B) = \int_{\mathcal{B}} P_{\mathcal{Q}}(A/y) P_{\theta}(t^{-1}(dy))$$

for all $\theta \in \mathcal{Q}$ and $B \in \mathcal{B}$, that is, $P_{\mathcal{Q}}(A/y)$ is a conditional probability of A given the sufficient statistic t which is defined independent of $\theta \in \mathcal{Q}$.

Let Y and Z be two-empty sets with or without their σ -fields \mathcal{B} and \mathscr{C} given in advance, and let t and u be both S_1 -or both S_2 -statistics from (X, \mathscr{A}) into Y and Z respectively. If there exist an (\mathscr{A}, P) -null set N and a mapping f from Z into Y such that

$$t(x) = f(u(x))$$
 for all $x \in X - N$, (2)

then we call t a functional contraction of the first kind or an F_1 -contraction of u.

If furthermore f in (2) is $\mathscr{C} \to \mathscr{B}$ measurable, then we call t a functional contraction of the second kind or an F_2 -contraction of u, with the understanding mentioned above that when \mathscr{B} and \mathscr{C} are not given in advance, \mathscr{B} is put to \mathscr{B}^* in (1) and \mathscr{C} is similarly put to

$$\mathscr{C}^* = \{C : C \subset \mathbb{Z}, u^{-1}C \in \mathscr{A}\}.$$

Needless to say, if t is an F_2 -contraction of u, then t is also an F_1 -contraction of u.

Let t be an S_i -statistic (i=1 or 2). If t is an F_j -contraction (j=1 or 2) of every S_i -sufficient statistic, then we call t an (S_i , F_j)-necessary statistic. If an S_i -sufficient statistic t is (S_i , F_j)-necessary, then we call t an (S_i , F_j)-necessary and sufficient statistic or an (S_i , S_j)-minimal sufficient statistic.

Lehmann and Scheffé (1950) established the existence of an (S_1, F_1) -minimal suffici-

ent statistic under the assumption that Q is separable under the pseudo-metric

$$d(\theta_1, \theta_2) = \sup^{A \in \mathcal{A}} |P_{\theta_1}(A) - P_{\theta_2}(A)|. \tag{3}$$

Further results on minimal sufficien statistics are also obtained in terms of S_1 -statistics and F_1 -contractions, among others:

- (a) Bahadur and Lehmann (1955) give an example of (X, \mathcal{A}, P) for which there exist both minimal sufficient σ -fields and (S_1, F_1) -minimal sufficient statistics, but $\mathcal{A}_0 \neq t^{-1}\mathcal{B}^*(\mathcal{A}, P)$ for any minimal sufficient σ -field \mathcal{A}_0 and any (S_1, F_1) -minimal sufficient statistic t.
- (b) Bahadur (1955) gives an example of (X, \mathcal{A}, P) for which there exists a minimal sufficient σ -field $t^{-1}\mathcal{B}^*$, where t is an S_1 -statistic but not (S_1, F_1) -minimal sufficient.
- (c) Pitcher (1957) gives an example of (X, \mathcal{A}, P) for which there does not exist a minimal sufficient σ -field nor an (S_1, F_1) -minimal sufficient statistic.
- (d) Landers and Rogge (1972) give two examples of (X, \mathcal{A}, P) , one of which has a minimal sufficient σ -field but not an (S_1, F_1) -minimal sufficient statistic, the other has an (S_1, F_1) -minimal sufficient but not a minimal sufficient σ -field.

In Section 2 we shall give some lemmas. In Section 3 we shall show that in some cases different conclusions may be obtained by using different definitions of statistics S_1 - or S_2 - and of functional contractions F_1 - or F_2 -, concerning the relations between statistics and sub- σ -fields and especially between minimal sufficient statistics and minimal sufficient σ -fields.

2. Lemmas

We call (\mathcal{A}, P) completed if any subset of an arbitrary (\mathcal{A}, P) -null set belongs to (hence (A, P)-null).

Lemma 1. Let (\mathcal{A}, P) be completed. If t and u are S_1 -statistics from (X, \mathcal{A}) into Y and Z respectively, and if t is an F_1 -contraction of u, then t is also an F_2 -contraction of u, putting $\mathcal{B} = \mathcal{B}^*$ and $\mathcal{C} = \mathcal{C}^*$.

Proof. By the assumption there exist an (\mathcal{A}, P) -null set N and a mapping f from Z into Y such that (2) holds. We shall show that f is $\mathscr{C}^* \to \mathscr{B}^*$ measurable.

Let B be an arbitrary element of \mathcal{B}^* , then we have from (2) that

$$t^{-1}B\Delta u^{-1}(f^{-1}B)\subset N. \tag{4}$$

Since $t^{-1}B \in \mathcal{A}$ by the definition of \mathcal{B}^* , the assumption of the completedness of (\mathcal{A}, P) and the inclusion relation (4) imply that $u^{-1}(f^{-1}B) \in \mathcal{A}$, which means $f^{-1}B \in \mathcal{C}^*$ by the definition of \mathcal{C}^* . Thus the $\mathcal{C}^* \to \mathcal{B}^*$ measurability of f is proved.

Lemma 2. Let (\mathcal{A}, P) be completed. If t is an (S_1, F_1) -minimal sufficient statistic from (X, \mathcal{A}) into Y, then t is also an (S_1, F_2) -minimal sufficient statistic from (X, \mathcal{A}) into (Y, \mathcal{B}^*) .

Proof. Use Lemma 1 to prove the (S_1, F_2) -necessity of t.

Lemma 3. Let P be a dominated family If t is an S_2 -sufficient statistic from (X, \mathcal{A})

into (Y, \mathcal{B}) , then t is als an S_1 -sufficient statistic from (X, \mathcal{A}) into Y.

Proof. By the assumption $t^{-1}\mathcal{B}$ is a sufficient σ -field of \mathcal{A} , hence $t^{-1}\mathcal{B} \subset t^{-1}\mathcal{B}^*$ implies the sufficiency of $t^{-1}\mathcal{B}^*$ by Theorem 6.4 of Bahadur (1954).

Lemma 4. Let P be a dominated family. If t is an (S_1, F_1) -minimal sufficient statistic from (X, \mathcal{A}) into Y, then t is also an (S_2, F_1) -minimal sufficient statistic from (X, \mathcal{A}) into (Y, \mathcal{B}^*) .

Proof. S_2 -sufficiency of t is evident. Let u be an arbitrary S_2 -sufficient statistic from (X, \mathscr{A}) into (Z, \mathscr{C}) . Then by Lemma 3 u is an S_1 -sufficient statistic from (X, \mathscr{A}) to Z, hence by the assumption of (S_1, F_1) -necessity of t, t is an F_1 -contraction of u, whith completes the proof.

Lemma 5. Let P be a dominated family. If t is an (S_2, F_1) -minial sufficient statistic from (X, \mathcal{A}) into (Y, \mathcal{B}) , then t is also an (S_1, F_1) -minimal sufficient statistic from (X, \mathcal{A}) into Y.

Proof. S_1 -sufficiency of t follows from Lemma 3. Let u be an arbitrary S_1 -sufficient statistic from (X, \mathcal{A}) into Z, then u is also an S_2 -sufficient statistic from (X, \mathcal{A}) into (Z, \mathcal{C}^*) , hence by the assumption of (S_2, F_1) -necessity of t, t is an F_1 -contraction of u, which completes the proof.

3. Main results

In this section we pose eight problems concerning statistics, sub- σ -fields, minimal sufficient statistics and minimal sufficient σ -fields, and give them answers as far as possigle. Answers are expressed by Yes or No, dedending on the definitions of statistics S_1 -or S_2 -and of functional contractions F_1 -or F_2 -given in parentheses.

Problem 1. Does the functional contraction of statistics imply the contraction of the σ -fields induced by them?

No (S_1, F_1) —Example 1 of Bahadur (1955) is a counterexample to the problem.

No (S_2, F_1) —The above example of Bahadur can be used as a counterexample also in this case, putting $\mathcal{B} = \mathcal{B}^*$ and $\mathcal{C} = \mathcal{C}^*$.

Yes (S_2, F_2) —Let f be $\mathscr{C} \to \mathscr{B}$ measurable mapping from Z into Y and let (2) hold for some (\mathscr{A}, P) -null set N. Let $t^{-1}B$, $B \in \mathscr{B}$ be an arbitrary element of $t^{-1}\mathscr{B}$, then we have $f^{-1}B \in \mathscr{C}$ because f is $\mathscr{C} \to \mathscr{B}$ measurable, and we get furthermore u^{-1} $(f^{-1}B) \in u^{-1}\mathscr{C}$ and (4). Hence $t^{-1}\mathscr{B} \subset u^{-1}\mathscr{C}$ (\mathscr{A}, P) is proved.

Yes (S_1, F_2) —The answer follows from the answer in the case (S_2, F_2) , putting $\mathcal{B} = \mathcal{B}^*$ and $\mathcal{C} = \mathcal{C}^*$.

Problem 2. Does the contraction of the σ -fields induced by statistics imply the functional contraction of the statistics?

No (S_1, F_1) —Example 2 of Bahadur (1955) is a counterexample to the problem.

No (S_1, F_2) —The above example of Bahadur can be used as a counterexample also in this case, for if t is not an F_1 -contraction of u, then t is not an F_2 -contraction of u

a fortiori.

No (S_2, F_1) —The same example of Bahadur is available as a counterexample also in this case, putting $\mathcal{B} = \mathcal{B}^*$ and $\mathcal{C} = \mathcal{C}^*$.

No (S_2, F_2) —The above counterexample in the case (S_1, F_1) is available *a fortiori* as a counterexample also in this case.

Problem 3. Does the minimal sufficiency of a statistic imply the minimal sufficiency of the σ -field induced by it?

No (S_1, F_1) —The example of Bahadur and Lehmann (1955) is a counterexample to the problem (See (a) in the Introduction).

No (S_1, F_2) —As (\mathcal{A}, P) in the above example of Bahadur and Lehmann is completed, the (S_1, F_1) -minimal sufficient statistic in the example is by Lemma 2 (S_1, F_2) -minimal sufficient. Hence the same example can be used a counterexample also in this case.

No (S_2, F_1) —Since the family P in the same example is dominated, the (S_1, F_1) -minimal sufficient statistic in the example is by Lemma 4 (S_2, F_1) -minimal sufficient, putting $\mathcal{B} = \mathcal{B}^*$. Hence the same example is available as a counterexample also in this case.

Yes (S_2, F_2) —Let t be an S_2 -sufficient statistic, then the sufficiency of $t^{-1}\mathcal{B}$ follows from the definition. Let \mathcal{A}_0 be any sufficient σ -field of \mathcal{A} . Let u be the statistic of the identity from (X, \mathcal{A}) onto $(Z, \mathcal{C}) = (X, \mathcal{A}_0)$, then u is an S_2 -sufficient statistic since u^{-1} $\mathcal{C} = \mathcal{A}_0$ is a sufficient σ -field. As t is an (S_2, F_2) -necessary statistic, t is an F_2 -contraction of u, hence by Yes-answer of Problem 1 in the case (S_2, F_2) $t^{-1}\mathcal{B}$ is a contraction of $u^{-1}\mathcal{C} = \mathcal{A}_0$. Thus the necessity of $t^{-1}\mathcal{B}$ is proved, which completes the proof.

Note. No-answers in the cases (S_1, F_1) , (S_1, F_2) and (S_1, F_1) follow also from No-answers of Problem 5 given below.

Problem 4. Does the minimal sufficiency of the σ -field induced by a statistic imply the minimal sufficiency of the statistic?

No (S_1, F_1) —Example 2 of Bahadur (1955) is a counterexample to the problem.

No (S_1, F_2) —The above example of Bahadur can be used as a counterexample also in this case, because the statistic in the example is not (S_1, F_2) -necessary *a fortiori*.

No (S_2, F_1) —Two S_1 -sufficient statistics t and u from (X, \mathscr{A}) into Y and into Z are also S_2 -sufficient statistic from (X, \mathscr{A}) into (Y, \mathscr{B}^*) and into (Z, \mathscr{C}^*) respectively. Hence the same example is available as a counterexample also in this case.

No (S_2, F_2) —The above counterexample in the case (S_2, F_1) is available a fortiori as a counterexample also in this case.

Problem 5. Does the existence of a minimal sufficient statistic implythe existence of a minimal sufficient σ -field?

No (S_1, F_1) —Example 2 of Landers and Rogge (1972) is a counterexample to the problem.

No (S_1, F_2) —Modify the above example of Landers and Rogge as follows. In their

notation modify $\mathscr A$ to the σ -field generated by the set T and the σ -field $\mathscr A^{(0)}$ of all Lebesgue measurable sets A for which

$$A_r = \{s \in [0, 1] : (s, r) \in A\}$$

is Lebesgue measurable for all $r \in [0, 1]$. By defining probability measures $Q_r, P_r, r \in [0, 1]$ and P as in their paper using $\mathscr{A}^{(0)}$ instead of $\mathscr{B} \times \mathscr{B}$, we can make (\mathscr{A}, P) completed.

In proving their proposition (i) we have only to modify $\mathcal{B} \times \mathcal{B}$ to $\mathcal{A}^{(0)}$. The proof of their proposition (ii) requires no modifications. Thus we have again a counterexample in the case (S_1, F_1) with (\mathcal{A}, P) this time completed. Hence by Lemma 2 the modified counterexample is available as a counterexample also in this case.

No (S_2, F_1) —Modify slightly the proposition (ii) in the same example of Landers and Rogge to the following: the idetity I viewing as an S_2 -statistic from (X, \mathcal{A}) onto (X, \mathcal{A}) is (S_2, F_1) -minimal sufficient.

To prove this modified proposition, let U be an S_2 -sufficient statistic from (X, \mathscr{A}) into (Z, \mathscr{C}) , then $\mathscr{B} \times \mathscr{B}$ in their notation is a contraction of $U^{-1}\mathscr{C}$, which can be seen by the same reasoning as the proof of their (a) since $U^{-1}\mathscr{C}$ is a sufficient σ -field. Furthermore we have

$$U^{-1}\mathscr{C}\subset U^{-1}\mathscr{C}^*=\mathscr{A}_U$$
 (in their notation),

so $\mathcal{B} \times \mathcal{B}$ is again a contraction of \mathcal{A}_{v} . The rest of the proof requires no modification. Thus the same example is available as a counterexample also in this case.

Yes (S_2, F_2) —The answer follows from Yes-answer of Problem 3.

Problem 6. Does the existence of a minimal sufficient σ -field imply the existence of a minimal sufficient statistic?

No (S_1, F_1) —Example 1 of Landers and Rogge (1972) is a counterexample to the problem.

No (S_1, F_2) —The above example of Landers and Rogge can be used as a counter-example also in this case, because there does not exist an (S_1, F_2) -sufficient statistic in the example *a fortiori*.

No (S_2, F_1) —Since the family of probability measures in the same example of Landers and Rogge is dominated, there does not exist an (S_2, F_1) -minimal sufficient statistic because of Lemma 5. Therefore the same example is available as a counterexample also in this case.

No (S_2, F_2) —The above counterexample in the case (S_2, F_1) is available *a fortiori* as a counterexample also in this case.

Proble 7. Does there exist a minimal sufficient statistic when Ω is separable under the pseudo-metric (3)?

Yes (S_2, F_2) —Let $\{\theta_1, \theta_2, \dots\}$ be a countable dense subset of Ω under the pseudometric (3), and let $\lambda = \sum_{i=1}^{\infty} 2^{-i} P_{\theta_i}$ be a probability measure defined on (X, A) which is

equivalent to P in the sense of Halmos and Savage (1949). Let a set of versions of Radon-Nikodym derivatives $dP_{\theta}/d\lambda = p$ (\cdot, θ) be fixed. Let Y be the countable product space of the sets of real numbers

$$Y=R\times R\times \cdots$$

and let B the σ -field generated by all cylinder sets of the form

$$\overrightarrow{i}$$
 $\overbrace{i-1}^{R \times \cdots \times R \times Bi \times R \times \cdots}$, $i=1, 2, \cdots$

where B_i is any Borel subset of R. Then

$$t(x) = (p(x, \theta_1), p(x, \theta_2), \cdots)$$
(5)

is shown to be an (S_2, F_2) -minimal sufficient statistic. The idea of the statistic (5) is due to Bahadur (1954). See also Nabeya (1978) for the detailed proof.

Yes (S_2, F_1) —The above t in (5) is (S_2, F_1) -minimal sufficient a fortiori.

Yes (S_1, F_1) —The original proof was given by Lehmann (1950). The same conclusion can also be deduced from the case (S_2, F_1) . For, since Ω is separable under the pseudo-metric (3), P is dominated, hence by Lemma 5 the above t is (S_1, F_1) -minimal sufficient, because it was (S_2, F_1) -minimal sufficient.

Open (S_1, F_2) — S_1 -sufficiency of the above t in (5) is clear from the case (S_1, F_1) . Let u be an arbitrary S_1 -sufficient statistic from (X, \mathcal{A}) into Z. As t is an (S_2, F_2) -necessary statistic from (X, \mathcal{A}) into (Y, \mathcal{B}) in the notation of the case (S_2, F_2) , t is an (S_2, F_2) -contraction of u if the underlying σ -fields of Y and Z are \mathcal{B} and \mathcal{C}^* respectively, but I have not been able to prove that t is an (S_2, F_2) -contraction of u if the underlying σ -field of Y is changed to \mathcal{B}^* .

A partial answer in this case is Yes, if (\mathcal{A}, P) is completed, as is seen from Lemma 1. Before giving the final problem we shall introduce the definition of completeness of sub- σ -fields and statistics.

Let \mathcal{A}_0 be a sub- σ -field of \mathcal{A} . If f is a real-valued \mathcal{A}_0 -measurable function, and if

$$\int_{x} f(x) P_{\theta}(dx) = 0 \text{ for all } \theta \in \Omega$$
 (6)

implies

$$f(x)=0$$
 a.e. $(\mathcal{A}_0, P_\theta)$ for all $\theta \in \Omega$, (7)

then we call \mathcal{A}_0 a complete σ -field. If f is a real-valued bounded \mathcal{A}_0 -measurable function, and if (6) implies (7), then we call A_0 a boundedly complete σ -field. Needless to say, if \mathcal{A}_0 is complete then it is boundedly complete.

Let t be an S_1 -or S_2 -statistic, and if t is an S_1 -statistic, then we put $\mathcal{B} = \mathcal{B}^*$ as usual. If the induced σ -field $t^{-1}\mathcal{B}$ is complete or boundedly complete, then t is called a complete or boundedly complete statistic respectively.

Bahadur (1957) shows that if \mathcal{A}_0 is a sufficient and boundedly complete σ -field, then \mathcal{A}_0 is minimal sufficient. The last problem roughly corresponds to this theorem of Bahadur.

Problem 8. Do the sufficiency and the completeness of a statistic imply the minimal sufficiency of the statistic?

No (S_1) —The statistic f in Example 2 of Bahadur (1955) is sufficient and complete, but not minimal sufficient.

No (S_2) —The same example is available as a counterexample also in this case, putting $\mathcal{B} = \mathcal{B}^*$ in my notation.

Acknowledgement

The author expresses sincere thanks to the Korean Statistical Society for inviting him to present a paper to the seminar heldin Seoul on November 2, 1981.

The author is grateful also to Professor H. Kudo for sending him some letters while he was writing a book review of Nabeya (1978) which have stimulated the author to the present research.

References

- (1) Bahadur, R.R. (1954). Sufficiency and statistical decision functions. *Ann. Math. Statist.* 25, 423~462.
- (2) Bahabur, R.R. (1955). Statistics and subfields. Ann. Math. Statist. 26, 490~497.
- (3) Bahadur, R.R. (1957). On unbiased estimates of uniformly minimum variance. Sankhya 18, 211~224.
- (4) Bahadur, R.R. and Lehmann, E.L. (1955). Two comments on "Sufficiency and statistical decision functions." *Ann. Math. Statist.* 26, 139∼142.
- (5) Halmos, P.R. and Savage, L.J. (1949). Application of the Radon-Nikodym theorem to the theory of sufficient statistics. Ann. Math. Statist. 20, 225~241.
- (6) Landers, D. and Rogge, L. (1972). Minimal sufficient σ -fields and minimal sufficient statistics. Two counterexamples. *Ann. Math. Statist.* 43, 2045~2049.
- (7) Lehmann, E.L. and Scheffé, H. (1950). Completencess, similar regions, and unbiased estimation. Sankhya 10, 305~340.
- (8) Nabeya, S. (1978). Mathematical Statistics. Kyoritsu Suhppan, Tokyo.
- (9) Pitcher, T.S. (1957). Sets of measures not admitting necessary and sufficient statistics or subfields. *Ann. Math. Statist.* 28, 267~268.