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Nomenclature

: Elastic parameter(6*=FE,/Gy-2vy+)
: Bending rigidity parameter

(¢*=D./Dsx)
Bending rigidities of orthotropic shell
Elastic constants of orthotropic shell

waves, respectively

: Nondimensional load parameter

: Critical static pressure

: Radius of the shell

: Time

: Axial, circumferential, and radial di-
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: Initial inward radial displacement
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dial coordinates on the median surface

: Batdorf parameter(Z=L?/Rh(1-v%)'/?)
: Geometrical parameter
: Axial, circumferential, and shear strai-
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: Poissonos ratios in orthotropic shell
: Mass density of shell material

amplitude of radial
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: Nondimensional circumferentia comp-

ressive stress

. Axial, circumferential, and shear stre-
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1. Introduction

The study of the dynamic stability of struc-
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tural elements has been an intérested subject
nearly forty years. In two survey articles?
Hoff traced the development of the various
problems and made classifications according to
the method of loading. One particular type of
dynamic loading of practical interest is that
applied rapidly. This type of loading has been
used in the analysis of columns®, rectangular
orthotropic plates®’, and isotropic shells®. A ra-
pidly applied load differs from an impact load
in that the time required to reach the critical
load is greater than the time required for a
pressure wave to travel from one end of the
structure to the other. Therefore, for a rapidly
applied load, inertial effects in the middle sur-
face of the shell are negligible and only the
motion normal to the middle surface needs to
be considered.

In recent years the use of anisotropic materi-
als, both homogeneous and composite, has inc-
reased. Many applications involve thin plates
and shells under loadings which may be failed
by buckling. The static stability of orthotropic
shells has been analyzed by numerous investi-
gators and representative results are contained
in Referencesé"®., However, the dynamic stabi-
lity of orthotropic cylindrical shells has received
very little attention.

It is the purpose of this paper to study the
elastic stability of a simply-supported orthotropic
cylindrical shell with various initial imperfecti-
ons under a step-pressure. Since the postbuc-
kling behavior is to be analyzed, the large-de-
flection shell equations are used. The effect of
orthotropy on nonlinearity of deflection-load
relation is discussed and the criterion of dyna-

mic buckling load is defined.
2. Equations of Motion

The nolinear equations of motion are based

on the assumptions commonly used in a Don-
nell-type formulation which is valid for mode-
rate-length cylinder. In the formulation of these
equations the following assumptions are made;
a) Donnell’s noninear shell theory is applicable;
b) longitudinal and tangential inertia terms are
lower order of importance compared to ncrmal
inertia.

Fig. 1 shows the cylindrical shell geometry
and coordinate system. Let(u,v) represent the
displacement components in the direction of the
coordinate axes(x,y), respectively. The notation
w is the inward normal displacement. Also,
the stress and strain components are denoted
by(0x,057+) and (e &, 7xy), respectively.

MR f XU

g |

V) :

‘_\l\i//;/./h //
L

Fig. 1 Shell geometry and coordinates.
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Assume the natural axes of the material
coincide with the coordinate axes, so that the
middle-surface stress-stain relations may be
written as

Ox E. vo,E, 0

0y |= | B B 0

Tay 0 0 (1—vasvyz)
€x
Ey D)
Tas

and

&x 1/E. —w/E, 0 Ox

& |=| —ve/E: 1/E, 0 oy | (2)

T xy 0 0 I/ny Ty

where E.,E,, and G., dencte Young’s moduli
in the ¥ and y directions and the shear modu-
lus, respectively;v., represents the relative con-
traction in the y direction influenced by the

tension in the x direction. Apparently, the
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relation E.v,.=E,v., holds.

The critical load for cylindrical shell under
axial compression has been known to be sensi-
tive to initial imperfections in the shell. In order
to investigate the effect of the initial imperfec-
tions one has to observe the postbuckling beha-
vior and should include the second-order strain-
displacement relations

_ ou ow \* 1 / 0w, \?
& ax+ <3x>_—2’(3x)
ov 1 ow) 1 (0w )\
ay+2(ay)—2( ay)

w Wo

T2+t R 3)
_ou . ov ow 0w _ 0w, 0w,
2Ty + ox  ox dy ox 0y

In Eq.(3) w(x,y,t) is the total displacement
normal to the middle surface and w,(x,y) is

Ey—

the initial displacement normal to the middle
surface.

The equation of motion in the direction
normal to the middle surface yields

an OQ;'
ox + oy

0w 1 o*w
toh g +0’h(7?—+—ay2 )

0w Pw
T2k Gy TP =0 @
where p denotes the mass density of the mate-
rial of the shell, ¢ is the time and

Q.= — aa‘ (Dx a;; +D., Dy_ ) )

2
Q=2 (D55~ +D,5%-)
withw =w—w,,

D.=E/12(1—vusvys)

D,=E,1/12(1 —vesVse) 6

ny=—%(Dxuyx+D,vxy)+2(Gx,h3/12)

+q—ph

Now one may respresent the stress components
in terms of a stress function F(x,y,f) in the

form as
o.=0F/0% oy=0%F/0%x
Toy= — 02/ 0x0y @)

These automatically satisfy the equations of

equilibrium in the plane tangent to the middle
surface of the shell when body force is not
included.

Thus the compatibility equation yields
4 4
—g]?}:;-i-( C%y — 2. g’ ) aizgyz

b;, F _ [( o*w )2

E. oyt 0x0y

*w 0w 1 o 0’w, \*
T oxr 9y R ox? _( ax6y>

Pw, 0*w, + 1 Jw, ] )

_|_

ox? oy* R ox?

and the equation of motion is

o'w o'w otw
D. oxt +2Dx 0x%0y* +D, oyt
w0 F 1 o*w \ 0°F
h[ oxt oyt +<—17+ 0y* > ox*
L, PF ow g ]
0x0y  0x0y h
0w
—poh o

The deflection function w(x,y,f) is chosen in
the separable form

w(x, y, ) =f®sin(mzrx/L)sin(ny/R) (10)
where f(£) is the time-varying amplitude of w,
and m and # represent the numbers of longi-
tudinal half-wave and circumferential wave,
respectively. This form satisfies the boundary
conditions of simply-supported edges.

In analyzing the effects of initial imperfec-
the initial and final shapes are usually
Thus,
the initial shape of the cylindrical shell will be

tions,
assumed to be the same basic form!®.

taken as

wolx,y) =fosin(mrx/L)sin(ny/R) an
where f, is the amplitude. This also satisfies the
boundary conditions.
Substituting Eqs. (10) and (11) into the com-
patibility equation, Eq.(8), a particular sclution
is obtained for a cylinder under external pressure
q only:

F(x,p,0)= F(
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where ¢,=¢R/h=nondimensional circumferen-
tial compressive stress,
B=F,/Gzy—2vyx,
=FE,/E.=D,/D,, and (13)
B=nL/zR.

Substitution of Egs. (10), (11) and (12) into
Eq.(9) and application of Galerkin’s method
yield the following nonlinear differential equation
of the second order for the time-dependent
function f:

AT A~ F D+ Bf+H~f oD f

=0 (14)
where the following notations are used:

A=—; T (2 M)

B—_LY m? _ O _ﬂ_)z
R T TR p (R

T, (m' + k2Bt
H=EL RS e—D./D.  (5)

Omitting the inertia and nonlinear terms and
setting f,=0, then the resulting equation is the
corresponding static buckling equation using
linear theory which vyields the critical circum-
ferential stress

Grer= GRIH)ore L s-Ch/ Ly,

12(1 - )ny)o’yx

(16)
where
ho— m* -+ 2c2m2 32+ k234
y— ﬂz
].2 1— xy”yx k2L4
+ v B g
4 | 21172 22 2R4
(m bn;f—#k,ﬂ) an

If the shell is isotropic, then v.,=v,.=y, E.=
E,=FE, c¢*=1, k=1, b*=2, and the Eq. (16)
becomes

ey (5

2 4
where
L2
Z:?h—(l—vz)”2 (19
Equation (18) is exactly the same as the one
from the classical linear theory!®. The least
critical load, with m=1, is
e BB (L)
12(1—vavsx) \ L
X[ 1—6—26222—%—12%4 T 12(1;:1”11”)
27 4
j’e?zll;z ,82(1+b22%2+k2ﬂ4) J (20

The large deflection equation describing the
static postbuckling behavior is obtained by
omitting dzf/dt2 term from Eq.(14) with fo=0

[_% L4 (m4+262m2[82 k254),_ gz
(m4+b2m252_’_k2 4 n 2
mi 5 <_-_> ]
+ T v 2D

For real value of f, the quantity in the bracket
should be positive.

The equation of motion, Eq. (14) will be in
a more convenient form if the following nondi-
mensional parameters are introduced:

P=q/P.., {=f/h, Lo=/o/h,

—y/ %—t (22)
where P., is the critical static pressure on an
orthotropic cylindrical shell. With these subs-
titution, Eq. (14) becomes

dx n * R2 p?

dr? 12(1 —vusvya) Lt

X (m?+2m*c* B2+ REBY) (C—Lo)
[ (m4+b2mzﬁz+kzﬁ4)
k*m*
—n* P(Po,/ED (RID) It
+(z/16) (Rh*/L*) (m*+kEH
X ((2—LHE=0 (23)
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3. Numerical Examples

To illustrate the application of Egq.(23),

Table 1 Material properties of the

numerical solutions are made for boron/epoxy
cylindrical shells of two kinds of orthotropy and
at a specified dynamic loading condition. The
material properties used® are shown in Table 1.

orthotropic cylindrical shells

Orthotropy I

Orthotropy 11

E.=40x10° psi  »,.=0,025
=4X10%® psi k2=0.1
G.»y=1.5X10° psi ¢2=0. 0995
v2y=0.25 psi b:=2,6167

E.=4x10° psi Vyx=0. 25
E,=40x10°% psi k2=10.0
Gxs=1.5X10° psi ¢*=(, 9953
Vy=0.025 b*=26.1667

Numerical results are presented for the cylind-
rical shell with R/A=100, L/R=2, and P..=
32.6662 psi and 126.8827 psi for Orthotropy I
and II, respectively.

The loading condition assumed in the presetn
study is a step-pressure. Its time variation is
considered as

P=0 at <0
P=P; at >0
and is shown in Fig. 2,

N
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|

Fig. 2 Shape of loading.

Equation(23)
the fourth-order Runge-Kutta method. The

is solved numerically using

values of initial imperfection ¢,=0. 001, 0. 01,
0.05, and 0.1 are used. The initial conditions
for the problem are {={, and d{/dr=0 at z=0.

Assuming that the mode shapes of the linear
problem are also relevant in the nonlinear
problem of the imperfect cylinders®, the critical
number of circumferential waves is chosen to
be 6% and an asymmetric mode with m=1 is
selected in the numerical calculations.

For the determination of the critical dynamic
step-pressure, the deflection response curves are
plotted. In Fig.3, the typical response curves of
the orthotropic cylindrical shell under step-pre-
ssure are shown. An examination of Fig.3
shows that there is no definite change of
stability as also observed in the static analysis
of the cylindrical shells. The nonlinear term in
Eq.(23) gives greater influence upon the respo-
nse when the deflection is large. In Fig. 4 and 5,
the amplitude-load curves areshown. In these

figures one can find the strong(hardening)
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Fig. 8 Nonlinear response curves of the
orthotropic cylindrical shell under
step-pressure.
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Fig. 4 Amplitude-load curves for a cylindrical

shell under step-pressure(orthotropy I).
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shell under step-pressure(orthotropy II).
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nonlinearity and the inflection points which
show the change of slope. These inflection
points are the critical step-pressures of the

orthotropic cylindrical shells with initial imper-

fections. The inflection points are checked with

respect to the linear response curve analysis.
In Fig. 6, typical linear midsection-deflection

response curves of an orthotropic cylindrical

shell under step-pressure are shown. Using the
linear theory one can observe that the ampli-

tude of the shell increases with time without

bound when the dynamic load is equal to or

beyond the inflection-point load.

Fig. 6 Linear response curves of the midsection
of the orthotropic cylindrical shell under
step-pressure.

i

Table 2 shows the approximate critical values

of ratios between the dynamic pressure and
the static pressure on the orthotropic cylindrical
shells. It is based on the Figs. 4 and 5,

Fig. 5 Amplitude-load curves for a cylindrical

4. Discussion and Conclusion

In the present paper the criterion of dynamic

Table 2 Critical values of pressure ratio,

Der

Initial imperfection

Orthotropy |

Orthotropy I

0. 0001(quasi-perfect)
0.01
0.05
0.10

1.010
1. 000
0.995
0. 985

1.010
1. 000
0. 950
0.970
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buckling load is defined by the inflection point
on the amplitude-load curve. This criterion can
be applied only to the shell with hardening
nonlinearity. To the shell with softening nonli-
nearity one can observe the limit load®. The
characteristic of nonlinearity depends mainly on
the deflection function. Since the deflection
function is chosen to approximate the shape of
the deformation and to satisfy the boundary
conditions, the nonlinearity therefore differs
with the loading conditions and shell geometries.

The degree of nonlinearity depends upon the
material properties of the orthotropic shell,
especially the value of E,/E.=Fk? For these
numerical examples the values of k% for the
orthotropy II is 100 times greater than that of
orthotropy 1.

From Table 2, one can observe that the
effect of initial imperfection on the shell under
step-pressure is not very significant. The
phenomenon of the hardening nonlinearity of
deflection are shown in Fig.4 and 5, Between
the two types of orthotropy, one can find that
the nonlinearity is sensitive to the initial impe-
rfection. The orthotropy has same effect on the
dynamic as well as the static critical pressure
which is about 4 times greater in Case II than
Case 1. The magnitude of critical pressure ratio
between the dynamic and the static shell is less
than that of the isotropic cylindrical shell
which is given P.,=1.07¢%.

In conclusion, a nonlinear shell theory has
been employed to investigate the dynamic res-
ponse of orthotropic cylindrical shells under
step-pressure. The shell is permitted to have
various initial imperfections. A criterion for the
dynamic buckling of the orthotropic cylindrical
shells under step-pressures is established in
connection with the characteristics of nonlinea-
rity. The numerical results indicate that the
buckling load of a cylindrical shell under step-

pressure can be approximated by the static
buckling load. The dynamic effect of loading
for the orthotropic cylindrical shell is smaller
than that of the isotropic cylindrical shell with
loading and geometry conditions assumed in the
present study.
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