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1. Introduction

Composite materials such as boron-epoxy,
glass-epoxy, reinforced plastics, and whiskers
are increasingly used in advanced structural
applications. > When a shell is made of composite
material or reinforced with stiffening elements,
its mechanical properties are usually directional.

General theory of anisotropic shells was
developed by Ambartsumyan®, and Dong et
al.® The static stabilities of anisotropic shells
have been studied extensively*~®. There are
few investigations on the dynamic stability of
anisotropic cylindrical shells. Chen and Bert®
deal with the dynamic stability of a thin-walled,
circular cylindrical shell made of either composite
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or isotropic material and conveying an inviscid,
incompressible liquid in helical swirling flow.
In this paper, the anisotropic cylindrical shells
are treated with linearlized relations and the
effects of end conditions are not considered.
The cylindrical shell is subjected to dynamic
surface loading. The inertia effects in three
directions, which are along the axis, circumfe-
rence, and transverse, are included in the
present study of dynamic stability. The equa-
tions of motion are formulated and an approxi-
mate solution is given in determinant form.

2. Equations of Motion

Let (u,v) represent the displacement compo-
nents in the direction of the coordinate axes
(x,y) in Fig. 1. The notation w is for the
outward normal displacement. Also, the stress
and strain components are denoted by (o=, ¢, Txy)
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the above equations are additional load compo-

Fig. 1

and (e, e, 7xy), respectively. For small deflec-
tion, the strain components on the middle
surface are given
=0u/ox,e,=0v/dy+w/R,
72y =00/0X+0u/oy ¢D)
Based on the Kirchhoff-Love hypothesis, the
stress-strain relations of an anisotropic material

becorne®
Ox by byz bis €x A
oy |=|bi2 ba2n bz €y -T A2 @)
Txy b1 bas bes Txy s

where b:;(,7=1,2, or 6) are anisotropic elastic
constants, A, is thermal expansion coefficients,
and T is the temperature gradient.

The dynamic stability of the cylindrical shell
will be studied by assuming certain small
deviations from the position of undisturbed
equilibrium and investigating changes in the
disturbances with time“?, Considering that
both the undisturbed and disturbed states satisfy
the equation of motion independently, we obtain

the variational equations

bN alvxy —

o Ty X oh-Ji- 612 =

oN, aN

T ph 3[2 =0 3
M, ,2aM,, . M, _ N,

ox% | “ oxoy 92 R

where p and ¢ are density of the material and
time, respectively. The notations X, Y, and Z in

nents due to the normal pressure ¢ and are
given as follows¢®:

X= qR( oxoy +_1%* Z%)

Y:—qk% @
2

Z—qR( gyLZU %2)

The linear shell constitutive relations for an
anisotropic cylindrical shell are written as
follows:

N, A A Ay on/ox

Ny |=| Az As Ass | |0v/2y+w/R )
Noj LA As Ase |0v/02+0u/0y

M. Dy Dy, Dy —0%*w/ox?

M, |=| Dy A Dy | | —0*w/0y? ®
M., Dys Das Dgg —20%w/0x0y

where A;; and D;; are defined as follows:
h12
(A, Diy) =5_h/2b;j(1, 2)dz )
Upon the substitution of Equations (1), (2),
(4), and (5~7) into (3), the following equa-

tions of motion are found.

0?2
A +(bse+ih’i)—£§a’iy-
o

+b16 axz +b66 ayz

2 +b12 axay +b26

1 qR
+ R <b1>+ 7 ) +b26 RBy
0%
Y =0 (8)

v _gR o
W Taxay T2

b22 ayg 26 axay +b55 axz
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bgg b95 au} 5211 _
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ou
+b22 a + bza R +b26 +b26 7% )
a?
+o5r-=0 (10
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where
C_ BTy ot ot
Vz _'—1_2'_[b11 ax4 +4b16 axaay
0! o*
+2(b12+2b66) axzayz +4b26 axays
a4
+bzz—a‘yle an

3. Method of Solution

In the present analysis, the end conditions
are disregarded. The expressions for the displ-
acements are assumed

u=U(t)cos (mx/L—ny/R) (12)
v=V(H)cos(mx/L—ny/R) a3
w=W()sin(mx/L—ny/R) (14)

where m/27x and » are the number of waves
in the axial direction [and the circumferential

direction, respectively. Because of the anisotropy.

the displacement functions used here are diffe-
rent from those used for isotropic cylindrcal
shells.

Substituting Equations (12), (13), and (14)
into Eqs. (8~10) and denoting a=L/R, the
following three relations are established

pL? d,z U | (m2b,,— 2mnab,e+ niatby) U

+ [(mzbls"mna(bss+b12) +n2a2526)] V
+ (_mab12+na2b26) IV
—(qaR/h)(mnV+mW)=0 (15)

2
pL2 ‘fitl/ + En2a2b25 — mna(b% -+ blz)
-+ mzble] U+ (n2a2b22 -‘zmnabge + m2b66) V
+ (nazbgz mabgs) W_ ( )(mna) U-'

(16)
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1202 R?
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The above .set of second-order differential
equations can be written the matrix form

o gL +(a+288) 7=0 (18)

where

100
C=pL3 010 |=pL¥I)

001
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by = —maby, +natby
bas' =nathy,—mab,g
b =atby+ o SO Lpin B
Lot (b 2040)
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The natural frequency of the unloaded cylin-
drical shell is @ and can be found from the
following characteristic determinant¢!®

A~wC=( 20)

The load is assumed

q()=qo+q'cosQt 21
where g, and ¢’ are constant, and Q is the
loading frequency. The first approximation to
the dynamic stability solution is¢?
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|2+ @t g/2E-B-1o%|=0 @
The static critical load can be found from

lZ+(qo+q')—IZ~B|=O 23
4. Numerical Example and Discussion

To illustrate the application of Eq. (23),
numerical evaluations are made for an isotropic
and two orthotropic cylindrical shells under
external pressure. The matrial properties used
are shown in Table 1.

Table 1 Material properties of the cylindrical shell,

Orthotropic shell

Isotropic shell

! case | case [[

E. 4 10%(psi) | 40Xx108(psi) |30 X 108(psi)

E,| 40x10%(psi) 4 X 10%(psi) {30 X 10¢(psi)

G| 1.5x10%(psi) | 1.5X10%(psi) {11. 5384 X 10°(psi)
Vs | 0.025 0.25 0.3

Yyx| 0.25 0.025 0.3

Nnmerical results are presented for the cylin-
drical shell with R/A=100 and a=2,

The characteristic determinant, Eq. (23),
yields a cubic equation of q. The cubic equation
has teen solved by Graeffe’s Root-squaring
method and the least root is selected as the
critical pressure. The numerical results are

given in Table 2,

Table 2 Critical pressure load (psi).

Orthotropic shell
Isotropic shell

case | 1 case ]I
124. 3992 13.0593 103. 5307
(126. 8827)4® (32.6662) (147. 2081)

The values in the parentheses are the classical
pressure loads which are calculated by Donnell-
type theory.® The difference of critical values
between present study and the classical theory

is based on the additional load components in
tangential directions in Eq. (4). For the ortho-
tropic cylindrical shell of case 2, the value is
only about 40 per cent of the classical one. The
reason is the very weak bending stiffness in
the circumferential direction.

For the isotropic and orthotropic cylindrical
shells under pressure loading, the additional
load components are not acting and can be
neglected. For the anisotropic cylindrical shell,
however, the additional load components should
be included because of the directional property
of the anisotropic material. The present theory
can be applied for the analysis of dynamic
stability of anisotropic cylindrical shells under
various pressure laodings.
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