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ABSTRACT

A replacement policy for a finite time span is proposed for the cumul -
ative process where an item can fail only when the total amount of deteri-
oration exceeds a prespecified failure level. The optimal deterioration limit
level is determined to minimize the total cost expected per unit for a
given time span, An illustrative example in case of periodically inspected

reformer tubes in ammonia plant is also presented,

1. I NTRODUCTION

A commonly considered replacement policy is the age replacement
policy in which equipments are replaced a specified time after their
installation or at failure, whichever occurs first, but the strategy
of replacing equipments only when they reach a certain age has short-
ings to regard all same aged items as being identical, irrespectively
of their current conditions on which their failure rate is dependent.

A wear dependent replacement rule has been proposed by Mercer

(1961) to overcome such shortcomings of age replacement policy but
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this policy also has the other shortcomings to require wear monitor—
ing system to :detect continuously deterioration level and preparing

a warm stand-by system; otherwise the whole system should be shutdown
only to prevently replace the item whenever its deterioration level
reaches a specified value.

As a mixed strategy to overcome shortcomings of age replacement
and continuous inspection and wear dependent replacement policies, a
periodical inspection and wear dependent replacement model is proposed
for the cumulative process where an item can fail only when the total
amount of deterioration exceeds a prespecified level. This model was
used by Nakagawa(1976) and Derman(1960). This type of replacement
policy should determine optimal inspection period and corresponding
deterjoration limit in consideration of economic factors. However,
we confine our attention to the following chemical plant problems of
determining only optimal deterioration limit for the sequential,
preventive replacement rule in a finite time span, since inspection
can be performed only during annual overhaul period predetermined for
whole plant preventive maintenance.

In this scheme we investigate the total amount of deterioration
of the nonfailed jtems immediately after annual operation. If the
deterioration level exceeds a prespecified limit w*, we shall replace
the items before they have failed, otherwise, we shall leave it
alone. During operation failures are instantly detected and tempo-
rary emergency measures are achieved at a heavy cost. Since the

replacement is a time consuming process, failed items as well as
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nonfailed items can be newly replaced with identical ones only
during annual shutdown periods.

Letting Nl(W)T denote the number of failures and NZ(W)T denote
the number of replacement for a specified deterioration limit w in a
given time span T, we may express the expected cost during (0,T) for

a specified deterioration limit w
= * *
C(W)T A ENl(w)T + a ENZ(W)T (1)

where we define

A = total amount of costs resulting from equipment failure
including repair cost, production loss, and raw material

loss costs, but exclusive of newly replacement cost.

a = cost for newly replacing the equipment with identical one.

We shall seek the optimal deterioration limit minimizing C(w)T for a
finite time span.

Let us clearly define our cumulative process of deterioration.
The deterioration can be wear, fatigue, corrosion, erosion, and/or
physical and chemical degradation. Assume that the amount of deter-
ioration Xt occurring during the interval (t-1, t) is observable at
discrete time points t and that the sequence Xt for t =1,2,..., T
is a sequence of independent, nonnegative, random variables with

known pdfs fl’ f2, eessy £« The equipment is known to fail if

T
n

Z:t='1

Xt> we (a given constant).
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2. THE MATHEMATICAL MODEL

It is convenient to describe this sequential replacement model
for a finite time span as a Markovian approach. .Fig. (1) shows how
the state space and transition diagram for this system might be con-
structed. States are defined simply by the equipment ages and labeled

by the nonnegative integer numbers i = 0,1,2,..., T and subscript s

means the states prior to inspection and preventive replacement.

Ist year -——s|e«— 2nd year
<~ 1st —>l<-2nd —>|e— 3rd ._>l<_ 4th —|

transitions

Fig, (1) Network flow model of equipment ages

During each annual operation equipments either grow a year older
(transition state i to i+ls) or fall into failed states (transition
state i to OS). After each inspection and replacement all nonfailed
equipments are classified into either state to leave alone (transition

.S . . - .
state i~ to i) or stafe to be prevently replaced (transition state i°
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to 0). We now identify state 0° with a failed item and state 0 with

new item. We can easily see that this process can be modified to a

Markov chains with a finite time space E = COS,O,IS,I, ....... ,TS).

Two times of transitions are occurred per a year. Let IZt—l denote

the state of the items prior to inspection and I2t denote the state
after t th year replacement.
In this case we can think of P as the transition matrix having

2T+2 rows and 2T+2 colums given by

N
(oS 0 18 5
0° | p¢0°,0% p(0°,0) p(0%,15%) «......... p(0°,1)°
0 | p€0,0%) p(0,0) p(0,15) .......... p(0,T%)
P=1%| pa%,0% pa®,00 p1%,1% .......... p(1%,1%) (2)
5 \\p(TS,Os) p(T%,0) . . ... ... p(TS,TS))

Consequently using the network flow probability notations,

( Os 0 1s TS N
0° | o 1 0 0
0 Pos 0 p0,1 0
_ .8
P= 0 pl,O 0 0 (3)
T-1 pT—l,O 0
s
> (0 0 0 1
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In this case define for i = 0,1,......,T-1,

Pig = probability the equipment of age i will fail in the

interval {i,i+l)

Pip = probability the equipment of age i1 will be prevently

replaced in the interval (i,i+l) .

Py 4T probability the equipment of age i will grow a year older
’

Py i1 = probability the equipment of age i will successfully
b

run in the interval (i,i+1).
Then each row sum is unity. For all i = 0,1,........ ,I-1,

Pis ¥ P 441 T
)

Pip ¥ P35 =1

Actual values of the stationary transition probability p(i,j)
is the function of the nature of the unit and the original replacement
rule w*. The method to get the actual values will be discussed in
the next section.

Suppose that we construct the unit with the new items which
means that the initial states are 0. Then, the probabilities of being
in states i° and i respectively in the t th year are equal to probabi-
lities to be in state i° and i after 2;—1 and 2t times of transitions
from initial state 0. If we defineP"™ to be n-step transition matrix

which is the nth power of P matrix. Hence, we obtain,
=-S — =.S = = - (2t_1) .S
p(I,y, =i)=p(I, ;=11 1,=0)*p(1;=0)=p (0,1%) )
i i @) .
= = = = * = =
p(I,, i) P(I,, 1|I0 0) p(io 0)=p (0,1)
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Furthermore, the probability of failure occurring in the t th year is

equal to that of being in state 0° in the t th year,

o (2t-1)

Py =P (0,0°) (6)

and similiarly the probability of replacement occurring in the t th

year is equal to that of being state O in the t th year.

p_.=p* (0,0) )

Therefore, the cost incurred in the t th year is:

ct=A*p(2t'1)(o,oS) + axp?®(0,0) for t=1,2,...,7-1 (8)
CT=A*p(2t_l)(0,0) for t=T
Letting T, denote discounting factors of time t = 1,2,..c0.... ,T,

then, discounted total cost incurred in the finite time span T is:

T
TC(wW) =% _C. T,

T _(2t-1) s
= A% L P (0,07)*r,
+ a* Zz=1p(2t) (0,0)*rt_ 9

which is the function of the original replacement rule w. Optimiza-

tion problem of this model is formulated as followings:

Objective function: Minimize TC(w) 0 <w<(wf (10)
subject to OSp(Zt-l) (O,OS) La for safety
(2t)
0<LpP (0,0) £8 for repairing capacity
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Optimization might be carried through differentiating equation
(9) with respect to w, but then the gradient is not readily available
Fibonacci and Golden Section search techniques are appropriate since
it is known that TC(w) is unimodal and a2 minimum of TC(w) is to
located with w in the interval Os;ws;wf. The unimodality condition
results from the fact that p(Zt_l)(O,OS) is monotone increasing
function of w and p(2t)(0,0) is monotone decreasing function of w.

If the finite time span T is sufficiently large, then it may
be difficult to compute the T th power of transition matrix P.

It is easy to varify that the probability of failure occurring in

the interval (t-1,t) satisfies the following renewal type of equation

for t = 2,3,..... ,T¢
(2t=1) 9,05 = Zti:;ip(Zi) (0,0) * P(X #KybooenntX, W,
X e K, > wp) (11)
225 (0.0) = L t- 1 2 (0.0) * p(x R U X <
S S oW+ » 28D (5, 0%)

where Xt is the amount of deterioration occurring in the interval

(t-1,t) and for t =1
p(0,0%) = P(x;>wy) (12)

2 (0,0) = p(x;>w)
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3. TRANSITION PROBABILITY AND MATRIX

Let us consider a simplified procedure for computation such a

sequential convolution and truncation problem by the following lemma:

LEMMA .

Then, Zi and
d<c.

PROOF .

Let

X,Y : nonnegative independent random variables with pdf
fX’fY respectively;

+
x® : X truncated at c >0( );

z =x°+7;
C

Z =X+Y5

d .
Zc : Zc truncated at d> 0
Zd : truncated at d > 0.

Zd are identically distributed random variables even if

By the definition of truncation, the probability density

function (hereinafter pdf) of x© is:

fxc(x) = fx(x)/FX(C) for 0<x<c (13)

0 otherwise .

The pdf of ZC=XC+Y is the convolution of ch and fY’ consequently

fz.(z) =
c

z , oz
—fo £.0(x) £y (z-x) dx = fo £y (z-x) £x (%) [Fy(c)dx  (14)

if 0<z<e¢

c
| J £ (z-x)f_(x)/Fx(c)dx if zD ¢
o7 x
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Similiarly, the pdf of Zi which is Zc truncated at d is:

£284) = £ (2)/ fgfzc(z)dz - ch<z)/FZ (d) for 0<z<d

Cc

fg fx(x)-fy(z—x)dx/Fx(c)

=

fg fg fX(x)-fY(z—x)/Fx(c)dx dz

- S (z)fX %) fY (z-x)dx

fg fg fX(x)'fY(z—x) dx dz (15)

if d is less than or equal to c.

And if d is greater than c, then,

fZ (z)
£d(z) = —5 ——— (16)
ZC fg fZ (z)dz
C
- fg fi(x)/FX(c)'fY(z—x) dx
JE ST () /E, () £y (-x)dxt /i_/gfx(x)/FX(c)-fY(z—x)dx

sz fx(x)fY(z—x) dx

s¢ f(z) fx(x)fY(z—x)dx dz+ fg fgfx(x)fY(z—x) dx dz

o

if 0<z<{ ¢ and,

S (%) fY (z-x)dx

£,d(z) = 0X
¢ ses 2 (Of (z-x)dx dz+ /‘i / gfx(x) £y (z-x) dx dz
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if ¢{z<{d. From the convolution of fX and fY we get the pdf of Z:

£,(2) = fg £y ()£, (%) dx - an

From equation (17) and definition of truncation, the pdf of Zd

fgfx(x)fy(z-x)dx
£,d(2) =|—— if 0<z <d, (18)
~x)d
fo_[OfX(x)fY(z x)dx dz
0 otherwise,

Comparing equation (15),(16), and (18), we arrive at the conclusion

that Zg and Zd are identically distributed even if d <c. Q.E.D.

If preventive replacements are performed with the replacement
rule w, then the deterioration level of the equipment after t th
annual operation Yt will be a sequence of random variables sequencial-
ly truncated at w in each interval. Hence, the following results are

quite intuitive:

Y = Xl’ for t =1 (19)
—W =

Y2 = Y1 + X2 for t 2

Y =YY +%x for t = 2,3

t t-1" %t ° »sen,T.

Let Z_ = L° X. and Z" denote Z truncated at w, from the lemma Z"
t i=1'1 t t . t
and YZ will be identically distributed. Therfore, the pdf of Yt can

be represented by the formula

= = rJ - <v<
fYt(y) th(y) ‘ZOfZZ—l(X)th(y x)dx, for 0<y<ec, (20)

W )
j‘ofzz_l(x)fxt(y—x)dx, for c(y.
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where fzw (z) are pdf of Z -1 Clearly, the transition probability
t-1 ‘

p(i,j) can be determined recursively using equation (20) for i,j ¢
E. Using the notations of equation (3), entries of the transition
matrix P will be obtained as followings:

W

wy
f f £, (X) £, (y-x) dx dy/ £,(x) dx (21)
0 0 1 0 1 1

o
I

Pic1,6 = MPi1

o
]

w y
S 0 fO fZi(ic)1 fxi(y-x) dx dy/pi-1,i

l-p;4

4 . EXAMPLE

Consider the replacement of the reformer tubes in ammonia plant
of which life is limited by the technical obsolescent. The most im-
portant cause of the failure is considered as creep rupture associated
with overheating. It is known that if the enlargement rate of the
outside diameter exceeds w = 2.5%Z, the tube is regarded as creep
ruptured and emergency measure to nip the pigtail of the ruptured
tube is accompanied by naptha and ammonia production loss to the
amount of A = w 70 MM(about $100 M). Then, the usual replacement
cost of the tube is a =W%3.5 MM (about $5,000). The enlargement
rate is observable every annual shutdown period and is assumed to
obey the gamma distribution with scale parameter 1 and shape parameter

ay respectively for the tube age t = 1,2,...,20. The experience
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shows that ay =4, a,=.3,a, =2, =a.= ..... =2a, ,_=.1,a_ =.2,

2 3 4 5 17 18

a =.3,cxzo=.4. Thus we replace the tube when the anlargement rate

19
of the tube exceeds w*, supposing that the plant useful life is 20

years. Using Fibonaccli search techniques, we get the optimum enlarge-

ment rate limit w* = 1.77%.

5 . CONCLUDING REMARKS

We have given a procedure for obtaining the optimum replacement
policy for a finite time span. However, the usage period for some
items may span an infinite interval. In this case, the optimum deter-
ioration limit can be obtained in a modified form of this procedure.
Transition matrix will be no more of use, but using Lemma, the prob-

ability of failure occurring, and the probability of replacement

Pee
occurring can be simply obtained. As is generally true, the optimum

replacement policy is more readily obtained for an infinite time sapn

than for a finite time span.
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