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ABSTRACT

Computational expressions for point availability and average availability
of a system of components each of which is subject to random failures and
has random restoration times are determined, FEach component is assumed
to have a fixed number of spares such that where all spares are exhausted
no restoration can take place. These expressions are useful in deciding
PL and ASL in the military logistic applications,

Given a fixed length of mission duration and finite number of spares, a
system may not be available at the end of a mission due to lack of spares,
The probability distribution of system down time due to lack of spares is

determined as a function of number of spares and mission duration.

I . INTRODUCTION

A key concern of military planners is the material readiness of

their weapon systems. Many attempts have been made in the past to

develop measurable indicators of material readiness. Among these

are reliability, fill rate, down time, maintenance man-hours, supply

response time, and availability. Out of these attempts to measure
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readiness, operational availability has become the most widely
accepted indicator.

Many people talk and write about operational availability, but
not all have the same notion as to what is meant by the expression.
Operational availability is generally considered to be a measure of
the likelihood that a system, when used under stated conditions in
the actual operational environment, shall operate satisfactorily.

It is clear that component reliabilities, maintenance policy, spare
parts support, system configuration, repair times, and supply re-
sponse times all have impact on availability. However, this notion
of operational availability can give rise to more than one workable
mathematical expression. To illustrate, consider a ship on a 60-day
deployment. Let A(t) be the probability that a given weapon system
is operational at time t. One might use any of the following as
reasonable measures of availability:

a) A(60) (end of deployment point availability)
1 60 . i1
b) 60 /7 A(t)dt (average availability)
0

c) The probability that the system shall operate satisfactorily
when called upon

Mean time to failure (MTBF)
MTBF + Mean time to replace (MTTR)

d)

The first expression is the likelihood that the equipment will
be operational at the end of the deployment; the second represents
an average availability over the duration of the deployment; the

third considers only the likelihood that the system is operational
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at those times when needed (thus introducing the mission duty cycle
as a factor to consider); and the last expression is the 'definition"
of availability specified by Ref. (1), and used most frequently in
practice. Under certain very restrictive conditions the above
expressions may yield essentially the same values. However, for most
real-world cases the expressions are not equivalent; they can be
substantially different. The following specific cases illustrate
some differences.
Case | : The equipment is a single component which has exponential
life time with failure rate i . There are unlimited spares aboard
ship. The distribution of the sum of supply response time (time
required to get the replacement part to the equipment) and repair
time (hereafter called replacement time) is exponential with rate 7.
The system is operational at the start of the deployment.
Define the random process {X(t): ¢t =0} as follows:
1 if component is operational at t
X(t) = «{
0 otherwise
Under the conditions above, X(t) is a renewal process and A(t) =

P(X(t) = 1) 1is easily derived from renewal theory to be

- " A
At) = ]+7]+2+77

exp { -(2+p )t} (1-1)

l'and MSRT + MTTR = l—we can write (1-1) as
4 ]

]

or, since MTBF

MTBF
MTBF + (MSRT + MTTR)

A(t) =

(MSRT + MTTR)

MTBF + (MSRT + MTTR) expl -( 4+ )t ) (1-2)

+
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To allow numerical comparisons of the four interpretations a), b),
c), and d) of availability, let 2= 0.0l and 7= 0.10. Then
a) A(60) = 0.90921

63/‘60 A(t)dt = 0.92285

0

b)

MTBF
MTBF + (MSRT + MTTR)

d) = 0.90909

There are only minor differences between a) and d) but a bit larger
difference between b) and the others. The calculation for interpret-
ation c) yields exactly the same result as b) if the times that the
component is needed are uniform on the intefval (0,60). Interpreta-
tion d) provides the most conservative estimate of availability.

From equation 1-2 one can easily see that

. ~ MTBF
lim A(t) = {7EF T (MSRT + MITR)

Thus d) is simply the limiting availability. This, however, is not
always the case as is shown later.
A plot of A(t) vs. t demonstrates how point availability vaies

as a function of time (length of deployment), See figure 1.1.

1
0.98
0.96 9615 .
0.2 266 9124 9097
0.92 — 9092
0.90

7 . . N t

15 20 45 60

Fig.l.1 Availability over time
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Consider now a case that is more operationally realistic.
Significant differences will be seen in the estimates yielded by the
different expressions.

Case 2 : The equipment is a single component which has exponential
life time with rate A. There is a single spare aboard ship and no
chance for resupply until the deployment is over. The replacement
time is exponential with rate 7». The system is operational at time
0.

The random process {X(t),t > 0} which describes the up/down
status of the equipment is not now a renewal process. A sample path

for X(t) is shown in figure 1.2.

X(t)

0 tl ty t3

Fig.1.2 Sample path for X(t) when only one spare is stocked

The important thing to note is that the component will remain in a
down status after time tg since there is no spare for replacement.
In the next chapter an expression is derived for the point availability
from which the following values are determined ( 4 = 0.0l and 7 =

0.10):
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a) A(60) = 0.8472
1 60

b) —— s A(t)dt = 0.9054
60 0

MTBF B
d) MTBF + MITR ~ 0-2091

Greater differences among the availability estimates are observed
when a single spare is stocked. The differences can be made quite
significant by appropriate choice of the parameters 4 and 5 . For
example, if 4 = 0.05 and 7 = 0.50,

a) A(60) = 0.2096

60
b) L S A(t)dt = 0.578361
60 0
MTBF
d) MTBF + MTTR 0.5091

The above examples show that there can be significant differences
in the values obtained from the different definitions of availability.
Each expression has its supporters. For logistics planning purposes,
military planners want to determine the likelihood that a deployed
unit will complete a mission with a given system operational. There-
fore, they need to know the point availability at time 7 where r is
the length of the deployment period. Furthermore, the average avail-
ability and the limiting availability are both functions of the point
availability. Therefore, we focus primarily on point availability
in this study. Examples of calculations of average availability and
the limiting availability are provided to illustrate their calculation.

The definition of availability based on the ratio of mean time to

failure to the sum of mean time to failure and mean time to replace
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leaves much to be desired. The definition assumes that the up and
down states of the system satisfy an alternating renewal process.
This implicitly assumes infinitely many spares making the expression
useless for determining the number of spares required to support a
system. Fﬁrthermore, the ratio expression is a limiting result,
whereas, the major interest is in the availability at specified
points in time or over specified intervals. Finally, the expression
does not lend itself for calculating the system availability as a
function of the availabilities of its components.

Let us now look at the point availabilities of some simple
systems. Consider first the case in which the system is composed of
two components connected in series each with infinitely many spares.
We assume that the components operate independently. It is easy to
see from first principles that the system availability is the product

of the component availabilities. That is,
A = .
Sys(t) Aj(E) Ay (E)

Similarly, if the system is composed of two components in parallel,

the system availability can easily be shown to be
Asys(t) =1-(1-4,(t)) (I-4,()).

The reader familiar with reliability theory will recognize the above
calculations as identical to those used to calculate reliabilities

of systems composed of two components in seires and parallel, respec-—
tively. These results are easily extended to any finite number of

components. The formulae are also valid when each component has
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only finitely many spares for support. Thus, the system availability
of any series/parallel/mixed system can be determined easily from the
availabilities of its components provided the components operate

independently.

II. AVAILABILITY OF ONE COMPONENT SYSTEM WITH
FINITE NUMBER OF SPARES

A . Point Availability

In this section we determine mathematical formulae for the
point availability of a single component system having n spares and
no repair capability. Since there are only finitely many spares and
no possibility for repair, the system will alternate between up and
down states until all spares are exhausted and will remain in a down
state whenever the last spare fails.

Let us introduce some notation that will be used. Let Ti be
the lifetime and Ri the replacement time of the ith unit. We assume
that {Ti}:=1 are independent and identically distributed (iid) with
distribution function F(t) and probability density f(t). Similarly,
the replacement times {Ri}ni=1 are iid with distribution G(t) and
density g(t). Furthermore, the replacement times are independent of
the lifetimes. We use f*g to indicate the convolution of f and g
and f(k) to represent the k~fold convolution. Finally, let Pk(t) be
the probability that the kth unit will be in operation at time t.

The first result we derive is the general expression for the
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point availability of the single-component system when there are n
spares, A(n)(t).
The system will be operational at time t if and only if the kth

unit (k =1, 2, ..., n+l) is in operation at time t. Thus,

n+1

s™ @ = T p
k=1
Now,
k-1 k-1
Pp(t) =P[ Z (T; +R) Stand T+ L (T, +R) >t ]
i=1 i=1 "
¢ (k-1) =
= fo (f*g) (s) F(t-g) ds
_ (k-1) —
= ( (f*g) *F ](t)
where
F(t) = P(Ti> t).
We have,
n+l
A™ (6 = T (gxg) (k‘l)*F)J(t)
k=1
or
n
A )y = Fe) + T cerg) OaF ey (2-1)
=1
This result can be rewritten recursively as
a0y = a0 ey 4 (o) W 3 (2-2)
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and

(n-1)

A(n)(t) = F(t) +L[A kfkg ]

(t)

Each expression has some usefulness. Equations (2-1) and (2-2) are
probably preferable computationally. Equation (2-2) provides a simple
expression for the marginal contribution that the nth spare provides

to system availability.

A ™ 2 4™ - 4PV = e Par,

For the special case in which f(t) = de t and g(t) = ne 7t

the convolution expression is found using Laplace transforms to be

P (k~1)
(k). () ,= Y5k, r (ktr-1)"r t -t
e T gy = E ) +r%1( DY s (k-r)!]e
O S S S s B¢
+ (_1) . [ ]'[ Z d ]e (2"3)
_ 5 ktl (k-l)' _, 0o (k- £-1)!
where
nPk=(—nil—1!5,—, 6 =427 , and 0=7-470.

As an example, if 1/30, 7 = 1/5 and t = 90, we have

7),= 9.7 7 -8 .
[(f*g)( )*F](t) = E*g] Eg—! -—5—.—t—+‘.L3&2'.§! ' 3 41

3
7-8.9-10 _t>  7.8.9-10-11 £> . 7.8-9.10-11-12 ¢t
Y The % 31T 5185 T 6106 1
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7-8-..12:13 -2t , 00, %8¢ 8.9 &% 8:9.10 3
716 7 687 76! 4°51 216 2 417 310 3°31
8:9.10-11 t2 8-9..+11-12  , 8.9.::12:13y - 7t _
P E ot sie s Tt ogis6 e = 0.0033

B . Average Availability

n
Let A;v)(t) be the average availability, i.e.,

Then, from eq. (2-1), (2-2), (2-3) and the identity

m! £

("]-)p ) (m- p)!. a o+1

at

B

JT meaTdT = e

=0

)]

we have

n t 0 k
A® iy = Lt 0 s Gk
av it t =1 0 ) k!

(k-r) - At

P
r (kir-1) r z o dc

rt ot (k-1)!

+ 2 (-1)

k k-1
g jET
5k+1 (k-1)!

n t
rt X 1) & ¢

T(k-— 4 -1)
(k- ¢-1)!

-_77‘[

P
(k+ )¢, Ty

1 0 ré

1 - it 1 2 0 x 1
- Lae Y+ L sk
it t o1 kI

k P
k+r-1
+ I (prrbor

r=1

(k= )t (- 2) PFL
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’ k-r - At
‘ 1 k-r-¢
f,zk~r+l+ Z‘ -1)F (k r- p)! ‘E_Z)pﬂ J1
1) -7t
1 - K+l e
+= X (-1 E J{E—— + Z (-1) P-——:T_—g—-‘—
t =1 skl n K - (k )
g(=1-0) (k1) (k+£)Pﬂr 1
. srl )t & k- 4
(- 7 =1 g16% 7
k- £4-1 o7t p (k= £-1-p)
+ X (-1 . o1l J}-
e =0 (k-4 ~1-0)t (-7)
For a numerical example, let 4 =357 ° =—%—and t = 90.

(2—1),

From egs.

values:

(2-4)

(2-2), (2-3), (2-4), we determine the following

Table 2.1 : Point Availability vs . Average Availability
A ) A (t)
av
n=20 0.0498 0.316737644
1 0.2170845 0.57439463
2 0.4622845 0.739965467
3 0.6721845 0.81423
4 0.791011967 0.844388
5 0.8388 0.8534416
6 0.8531 0.8555475
7 0.856412 0.856957
I 0.859 0.8639455

-54-



- rara - o anananaray - ww (] RERY O ewes

C . Tradeoff of Replacement vs. Repair

A high level of operational availability can be achieved in
different ways. One can increase the reliability of the system
components, one can provide generous spares support, one can build
in system redundancy, and one can provide a maintenance capability.
After an equipment is put into operation there is little chance to
do anything about component reliability or system configurationm.
However, one can still consider logistics tradeoffs between providing
spares support and a repair capability which consumes only piece-
parts supéort.

Suppose that a system can be repaired with repair rate ' and
assume that infinitely many repairs can be made. The repair rate 7'
required to provide a specified level of availability, A(t), can be

determined by solving for %' in:

N A : -
Agp'(t) 2+77,+ Ty ©XP (2+ 7"t (2-5)

In evaluating the tradeoff between repair and spares support it is
useful to compare the repair rate %' with the number of spares, n,
required to achieve the same point availability. That is, we compare

7' with the value of n which satisfies

n _ - (k) =
A (t) = exp(-4t) + 2 [(f*g) " "*F ] (2-6)
k=1 ()

Certainly, there are other factors to consider in making a decision
about repair vs. replacement. For example, one would need to consider

manpower requirements, training, piece-parts support needs, and space
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considerations. However, the tradeoff discussed above is useful as
an indicator of whether or not one should even consider repair.

As a numerical example let 4 =-§%; /] =-%; and t = 90.

A(1) P,

© 4 (f*g*F) , . = 0.2170845

(£) = e (t)

To achieve this level of availability we find that the maintenance
rate 7 ' should be at least 0.008233.

For n = 2,

2
L5 C(erg) WaFY L = 0.4622845.

(2) -
A (t) = e
k=1 (€)

On solving (2-5) for 7', with A,/ (t) set to 0.4622845, we find
that 7 ' = 0.028423.
Tables 2.2 shows the comparisons between n and 7' for n = 1 to

7 (for values of n larger than 7 there is very little increase in

A t)).

Table 2.2 : Repair Rate as a Function of n( for a given {1,7)})

A(t)

7 Availability (4,7) 7’

n=1 0.2170845 0.008233 (7= 24.37")
2 0.4622845 0.028423 (7= 7.0367")
3 0.6721845 0.0683353 (7= 2.987")
4 0.791012 0.126167 (7= 1.585 7")
5 | 0.8388 0.173449 (7= 1.15317")
6 0.8531 0.193578 (7= 1.033 7")
7 0.856412 0.198812 (7= 1.006 7")
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Recall that 75 (the replacement rate in the finite spares case)
is 0.20. The repair rate %' required to achieve the same level of
system availability as achieved in the finite spares case is always
less than 7 , but must converge to 7 as n gets large. The ratio

between 7 and 7' is shown in the last column of Table 2.2.

D . Distribution of Down Time Due to Lack of Parts

In a mission of a fixed duration, the contribution of the nth
spare part cannot be determined solely by looking at the point avail-
ability. This is because, even with generous spares support, the
system will alternate between up and down states as the system fails
and is repldced. One indicator of the contribution of the nth spare
part is the decrease in downtime that results from the inclusion of
the spare part. In this section we address this problem by deriving
the distribution of downtime due to the lack of spare parts.

Suppose we have n-1 spares available for a component for a

mission of duration (0,t). As before let (T be i.i.d. random

i 1=1
variables (exponential) representing "up" times and (Ri} ;=1 be
i.i.d. random vairables representing replacement times.
Let
n n-1
X, = L T,+ L R,
i= i

R T R

Xy is the random variable representing the duration from time O to

the point in time at which the component fails for the nth time.
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If an nth spare (n+l parts) is added to support this component
then the nth spare will begin to function after a replacement time
of length Rn' Let X, = X1 + R,, then the actual contribution of the
nth spare to the availability is made after time X2'

Let Y = max{O,t—X2 1. Then Y is a random variable representing
the duration of "down" time due to the lack of more than n-1 spare

(n)

parts. Let k (t) be the pdf of the random variable X2' Then

™) =t ™,

and the distribution function is given by

oo

L,(x) = Ply<x} =P(x32t-x1) =/ ™ (ryar
t-x

For example, when n = 2,

0 ~ A -
By - wp P =D 2= B Ty (10D T

B — (t-x)

(2) _ dL(x) _,(2)
4 (x) = Franle k

6 - - - -
=[‘5—]2 C(t-x- gz')e 4 (t=x) + (t—x+'§‘)e 7 (t-x) ]

for 0<{x<t, and

-4t
©o 2 o<
4(2)(0) = f . k(z)(r)dT - [%] [/t (7 —%)e dr

7 (e+he T ar)

since Y 0 when X2 Z_t.
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Thus, the p.d.f. of Y when n = 2 is

g.2,.t 1 2 -2t _t 1 2 |t
5] E(1+12—2—5 e +(;+77—2+7)—(7 de ") for X =0
2
4( )(x) = and
8.2 2, -A(t- - -
GG (Ctx-De (t X)+<t-x+§)e 7CEX0 3 400 0 (x <t
Graphically,

(2-7)

4
P (2) (x)

//’"—-§\\“‘\\\\\\\5“__4 )

0 t

The closed form expression for the distribution function of Y

for arbitrary n is:

- A(t-x) n-1 . n-i-1
(n) e VIR | (n-1)! | (t-x)
e I = IR N oo R EF D L
n-1 P -4 (t-x) n-r-1 .
_yr _(otr-1) re 1y J (n-r-1)! |,
* ;El b r1of (n-r-1)! [jzg -1 (n-r-j-1!
(t—x)n_r—j_l /i (t—X) n-1

0 .
CoFr P 0T e & b

(n-1)! (t—x)n_i_1 n_l_(n+r—1)Pr e—n(t—x)

*(n-i-1)! (- 1)i+1 + ;EI s F : (n—r—l)!.
n-r-1 . e _\n-r=j-1
' 3. (n-r-1)! (t-x) (2-8)

120 @-r-3-D7 ~ _ 3
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If we defineni(n)(x) to be 1 - L(n)(x), then the expected down time

in the interval (0,t) when there are n spares is given by

t _
S L(n)(x)dx,
0

and the expected amount of down time prevented by adding the nth

spare part is

t _ _
5@ Dy 2™ Gy yax.
0

Il . SUMMARY AND CONCLUSIONS

Operational availability is widely understood to be a measure
of the likelihood that a system will function successfully when
called upon. However, there are differences in the way that opera-
tional availability is calculated. U.S. Military documents(z)
specify that operational availability be calculated by taking the
ratio between the meantime to failure and the sum of the mean time
to failure and the mean time to replace a failed unit. This defini-
tion ignores many of the critical factors of interest and it is
often not mathematically correct.

The weapon system implied in this study is composed of compo-
nents connected in series and parallel. Each component is subject
to random failures and random restoration times until all replace-
ment spares are exhausted. The failure times of each component are
assumed to be independent and identically distributed with exponen-—

tial distributions.
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Similarly, the restoration times for a component are exponential iid
random variables. We have considered a case where the components
operate independently of each other. For this system, the system
availability can be determined easily after the point availability

of each component has been determined as a function of the number of
spares available. The formulae derived in this study can usefully
applied to military logistic applications in calculating number of
spare parts to each unit(PL/ASL) to achieve a desired level of avail-
ability of any weapon system.

Exact expressions for the point availability of a one component
system and for the marginal contribution to availability of the nth
spare are determined as a function of the failure and repair para-
meters and the number of spares. For large values of n, normal
approximation are obtained to provide simpler expressions.

The exact expression for the average availability is determined
from the point availability. The tradeoff between providing a main-
tenance capability (implicitly equivalent to an assumption of infini-
tely many spares and larger replacement times) and providing modular
replacement with finitely many spares is discussed. The maintenance
repair rate 7' that achieves the same availability provided by the
replacement policy with n gpares is determined. When n is small,

the replacement rate » must be very large compared to the repair

rate 7 '; however, when n gets large the ratio of » ' to » appro-

aches one.
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Given a fixed length of mission duration and a finite number of
spares a system may not be available at the end of a mission due to
a lack of spares. The probability distribution of this downtime is
determined as a function of the number of spares'and mission duration.
This probability distribution could be used to generate other measures
of effectiveness for determining the number of spares that should be
allocated to a system.

For gystems containing twé'or more components, the system avail-
ability can be determined easily by calculations identical to those
used to calculate system reliability from component reliabilities
whenever the components operate independently. All that is needed

is to replace component reliabilities with component availabilities.
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