ON THE PROPERTIES OF LOCAL HOMOLOGY GROUPS OF SHEAVES*

WON-SUN PARK

ABSTRACT

모든 記號는 G.E Bredon의 著 Sheaf Theory의 記號을 따른다. A가 torsion free이며 elementary sheaf이라 하자. 그리고 L을 injective L-module이라 하자 $dim_{\rho}X<\infty$ 이라면 support의 family ρ 와 locally subset z에 대하여

$$\Gamma_z({}^{\sim}Hom(\Gamma_{\mathfrak{g}}(L),L)\otimes A)\simeq H_0{}^z(X:A)$$

$$H_{-\mathfrak{g}}(X:A)=0, \quad \mathfrak{p}=1,2,3,\cdots$$

이며 support의 family c 와 compact subset 2에 대하여도

$$\Gamma_z({}^{\sim}Hom(\Gamma_c(L),L)\otimes A)\simeq H_o{}^z,(X:A)$$

 $H_{-p}^z(X:A)=0, \quad p=1,2,3,\dots$

A가 elementary이면 locally closed 2와 2에서 closed인 2' 그리고 2"=z-2'에 대하여 exact sequence

$$\cdots \rightarrow H_{\flat}^{z'}(X:A) \rightarrow H_{\flat}^{z}(X:A) \rightarrow H_{\flat}^{z''}(X:A) \rightarrow \cdots$$

가 存在한다.

Throughout this paper, we assume that X is topological space and all sheaves are sheaves of L-modules on X without any statements where L is a principal ideal domain. For each open set U of X, $\Gamma_{\varphi}(A)$ is the set of all sections of sheaf A with supports in φ where φ is a family of supports. We shall use the notations of sheaf theory [1].

A sheaf A on X is said to be elementary if it is locally constant with finitely generated stalks. A will be called φ -element if in addition, each member of φ can be covered by a finite number of open subsets of X such that A is constant on each member of this open covering.

^{*} This research was supported by the Korean Ministry of Education Scholarship Foundation for 1979.

LEMMA 1. If a sheaf A is flabby and torsion free and sheaf μ is elementary, then $A\otimes \mu$ is flabby.

PROOF. Since flabbiness is local properties, we can assume that μ is constant without loss of generality. If μ is a sheaf of finitely generated free L-module, we can put

$$\mu = X \times L^n$$

where $L^n = L \times L \times \cdots \times L$ has the discrete topology. This means that μ is flabby. For open U of X, $A(X) \rightarrow A(U)$ and $\mu(X) \rightarrow \mu(A)$ are surjective and since A is torsion free

$$A(X)\otimes\mu(X)\longrightarrow A(U)\otimes\mu(X)$$

and

$$A(U)\otimes\mu(X)\longrightarrow A(U)\otimes\mu(U)$$

are surjective. Therefore

$$(A \otimes \mu)(X) \longrightarrow (A \otimes \mu)(U)$$

is surjective.

Let μ be a constant sheaf of finitely generated L-modules. Then there is a positive integer n such that $X \times L^n \to \mu(X)$ is surjective.

From the commutative diagram

$$X \times L^n \longrightarrow \mu(X) \longrightarrow 0$$
 (exact)
 $U \times L^n \longrightarrow \mu(U) \longrightarrow 0$ (exact)

 $\mu(X) \longrightarrow \mu(U)$ is surjective for all open U in X. Thus $A \otimes \mu$ is flabby.

Let $\mathfrak A$ be a cosheaf on X and L be L-module. Then there is the induced L-homomorphism

$$\rho_{uv}$$
: $Hom(\mathfrak{OL}(U), L) \longrightarrow Hom(\mathfrak{OL}(V), L)$

from $i_{u,v}$: $\mathfrak{A}(V) \longrightarrow \mathfrak{A}(U)$ for open $V \subset U$.

Thus $U \rightarrow Hom(\mathfrak{A}(U))$. L) and ρ_{uv} make a presheaf.

Let $^{\sim}Hom(\mathfrak{A},L)$ be the sheaf generated by this presheaf. Then $F^{\sim}Hom(\mathfrak{A},L)=Hon(\mathfrak{A}(X),L)$.

Let \mathfrak{A}_* be a graded cosheaf with a differential $d: \mathfrak{A}_n \longrightarrow \mathfrak{A}_{n-1}$ of degree -1 such that $d_2=0$.

Consider the differential sheaf

$$D(\mathfrak{A}_{\bullet}, L) = ^{\sim} Hom(\mathfrak{A}_{\bullet}, L^{\bullet})$$

where L^* is the canonical injective resolution of L and

$$D^n(\mathfrak{A}_{\bullet}, L) = \sum_{b+a=n}^{\infty} Hom(\mathfrak{A}_{\bullet}, L^a).$$

The differential $d:D^n \to D^{n+1}$ is d'-d'' where d' is the homomorphism induced by the differential $L^{e} \longleftarrow L^{e+1}$ and $(-1)^n d''$ is the homomorphism induced by $\mathfrak{R}_{p+1} \longrightarrow \mathfrak{R}_p$. If α^* is a c-soft differential cosheaf with the gradation

$$(\Gamma_c \alpha^*)_n = \Gamma_c \alpha^{-n}$$

The differential sheaf $D(\Gamma_c \alpha^*: L)$ will also be denoted by $D(\alpha^*)$. Also, as above, we let D_n stand for D^{-n} .

Consider the canonical injective resolution $I^*(X:L)$ of L

For a sheaf A on X, we define

$$C^{\bullet}_{\bullet}(X:A) = \Gamma_{\bullet}[D_{\bullet}(I^{\bullet}(X:L)) \otimes A]$$

$$H^{\bullet}_{\bullet}(X:A) = H_{\bullet}(C^{\bullet}_{\bullet}(X:A))$$

with respect to family φ of supports.

LEMMA 2. Let
$$0 \longrightarrow \mu' \longrightarrow \mu \longrightarrow \mu'' \longrightarrow 0$$

be an exact sequence of sheaves. If μ' is elementary then there is the long exact sequence of homology groups

$$\cdots \longrightarrow H^{\theta}_{\mathfrak{p}}(X:\mu') \longrightarrow H^{\theta}_{\mathfrak{p}}(X:U) \longrightarrow H^{\theta}_{\mathfrak{p}}(X:\mu'') \longrightarrow \cdots$$

for any family φ of supports.

PROOF. We have already know that $D(I^*(X:U))$ is flabby and torsion free. Hence the sequence

$$0 \longrightarrow D(I^*(X;L)) \otimes \mu' \longrightarrow D(I^*(X;L)) \otimes \mu \longrightarrow D(I^*(X;L)) \otimes \mu'' \longrightarrow 0$$

of sheaves is exact. By Lemma 1, $D(I^*(X:L)) \otimes \mu'$ is flabby.

Therefore

$$0 \longrightarrow \Gamma_{\mathfrak{p}}(D(I^{\bullet}(X:L)) \otimes \mu') \longrightarrow \Gamma_{\mathfrak{p}}(D(I^{\bullet}(X:L)) \otimes \mu) \longrightarrow \Gamma_{\mathfrak{p}}(D(I^{\bullet}(X:L)) \otimes \mu'') \longrightarrow 0$$

is exact for any family φ of supports. By the property of homology functor we have the long exact sequence

$$\cdots \rightarrow H_{\mathfrak{p}}^{\mathfrak{p}}(X:\mu') \longrightarrow H_{\mathfrak{p}}^{\mathfrak{p}}(X:\mu) \longrightarrow H_{\mathfrak{p}}^{\mathfrak{p}}(X:\mu'') \longrightarrow \cdots \cdots$$

Let z be a locally closed subspace of X. We define

$$\Gamma_{\mathbf{z}}(A) = \{s \in A(X) \mid |s| \subset \mathbf{z}\}$$
 for a sheaf A on X and $\Gamma_{\mathbf{z}}(A|U) = \{s \in A(U) \mid |s| \subset \mathbf{z}\}$ for open U with $\mathbf{z} \subset U$

For a locally closed subset z of X and a sheat A on X, we define

$$H_{\bullet}^{z}(X:A) = H_{\bullet}(\Gamma_{z}(C_{\bullet}(X:A)))$$
 is local cohomology groups of X with

coefficients in A and supports in z. By Lemma 2, the following statement is obvious.

Let $0 \longrightarrow \mu' \longrightarrow \mu'' \longrightarrow 0$ be exact sequence of sheaves and z a locally closed subset of X. If μ' is elementary then there is a long exact sequence.

$$\cdots \rightarrow H^{\mathbf{Z}}_{\mathfrak{b}}(X:\mu') \longrightarrow H^{\mathbf{Z}}_{\mathfrak{b}}(X:\mu') \longrightarrow \cdots$$

For any family φ of supports, we define $dim_{\varphi} X$ to be the least integer n (or ∞) such that $H^{k}(X:A)=0$ for all sheaves and for all k>n.

THEOREM 3. Let A be a torsion free sheaf which is elementay and let L be injective as L-module.

i) If $dim_{\phi}X<\infty$, then for any family φ of supports and locally closed subset z of X

$$\Gamma_z({}^{\sim}Hom(\Gamma_{\varphi}(L),L)\otimes A) \simeq H_0^z(X:A)$$

$$H_{-p}^z(X:A) = 0, \qquad p = 1,2,\dots$$

ii) For the family c of supports and a compact subset z of X

$$\Gamma_z({}^{\sim}Hom(\Gamma_c(L), L)\otimes A) \simeq H_0^2(X:A)$$

 $H_{-s}^{\sim}(X:A) = 0, \quad p = 1, 2, \dots$

PROOF. ii) Since A is elementary iff A is C-elementary

$$H_{-\bullet}(X:A) = H_{-\bullet}(\Gamma_c D(I^*) \otimes A$$

for an injective resolution $0 \longrightarrow L \longrightarrow I^*$ of L. Since L is injective $0 \longrightarrow L \longrightarrow L^0(=L) \longrightarrow 0$ is an injective resolution of L.

Hence

$$0 \leftarrow \text{--}^{\sim} Hom(\Gamma_c(L), L) \leftarrow \text{--}^{\sim} Hom(\Gamma_c(L^0), L^0) \leftarrow 0$$

is exact. Since A is torsion free

is exact. And thus

$$0 \longleftarrow \Gamma_{\mathbf{z}}({}^{\sim}Hom(\Gamma_{c}(L), L) \otimes A) \longleftarrow \Gamma_{\mathbf{z}}({}^{\sim}Hom(\Gamma_{c}(L^{o}), L) \otimes A) \longleftarrow 0$$

is exact.

Therefore, $H_o^z(X:A) \simeq \Gamma_z({}^{\sim}Hom(\Gamma_c(L), L) \otimes A)$ $H_o^z(X:A) = 0, \quad p = 1, 2, 3, \dots$

For cur proof of i), we shall use the above notations. Since $dim_{\phi}X < \infty$,

$$H_p^{\mathbb{Z}}(X:A) \simeq H_p(\Gamma_{\mathbb{Z}}(D(I^*) \otimes A).$$

Thus i) can be easily proved by the same way as above.

LEMMA 4. Let z be locally closed in X,z' closed in z and z''=z-z'.

Then there is an exact sequence

$$0 \longrightarrow \Gamma_{z}'(A) \longrightarrow \Gamma_{z}(A) \longrightarrow \Gamma_{z}''(A)$$

for a sheaf A on X.

Furthermore, if and A is flabby, than

$$0 \longrightarrow \Gamma_{z}'(A) \longrightarrow \Gamma_{z}(A) \longrightarrow \Gamma_{z}''(A) \longrightarrow 0$$

is exact.

PROOF.
$$\Gamma_{z'}(A) = \{s \in \Gamma(A) \mid |s| \subset z'\}$$

V=X-z is open in X and $z''=z\cap V$ is closed in V.

$$\Gamma_2''(A) = \{s \in \Gamma(A|V) \mid |s| \subset z''\}$$

The natural restriction

$$\phi: \Gamma(A) \longrightarrow \Gamma(A|V)$$

induces a map

$$\phi_z : \Gamma_z(A) \longrightarrow \Gamma_z''(A)$$

Since $\phi_z(s)=0$ implies that s is zero in z for $s \in \Gamma_z(A)$, s has its support in z'. If A is flabby, then ϕ is surjective.

Therefor there is s' in $\Gamma(A)$ restricting to s for $s \in \Gamma_z''(A)$. Since V = X - z' and ϕ is surjective, s' is an extension of element in $\Gamma(A|V)$.

Hence ϕ_z is surjective.

THEOREM 5. Let z be locally closed in X and z' closed in z and z''=z-z'. If a sheaf A is elementary then there is a long exact sequence

$$\cdots \rightarrow H_{p_{\ell}}^{2}(X:A) \longrightarrow H_{p}^{2}(X:A) \longrightarrow H_{p}^{2}(X:A) \rightarrow \cdots$$

PROOF. Since $D(I^*(X:L))$ is flabby and torsion free,

 $D_*(I^*(X;L)) \otimes A$ is flabby by lemma 1. By Lemma 4, we have the exact sequence

$$0 \rightarrow \Gamma_{\mathbf{Z}'}(D(I^*(X:L)) \otimes A) \rightarrow \Gamma_{\mathbf{Z}}(D(I^*(X:L)) \otimes A) \rightarrow \Gamma_{\mathbf{Z}''}(D(I^*(X:L)) \otimes A \rightarrow 0$$

Therefore we have the long exacr sequence.

$$\cdots \rightarrow H_{\mathfrak{p}}^{z'}(X:A) \longrightarrow H_{\mathfrak{p}}^{z}(X:A) \longrightarrow H_{\mathfrak{p}}^{z''}(X:A) \rightarrow \cdots$$

REFERENCES

- 1. G.E. Bredon: sheaf theory, Mc Graw-Hill Book company (1965).
- 2. A.Borel J.C Moore: Homology theory for locally compact space, Michigan Math. J., Vol 7 (1960).
- 3. A Heller, K.A Rowe: On the category of sheaves, Amer, J. of Math. Vol 84 (1962).
- 4. R. Hartshorne: Local cohomology. springer-Verlag (1967).
- 5. R.G. Swon: Theory of sheaves, University of chicago press (1964).
- 6. E.H. spanier: Algebraic topology, McGraw-Hill Book Company (1966).

(Chonnam National University)