A NOTE ON CLOSENESS SPACES

KYU-HYUN SOHN

ABSTRACT

Kasahara는 任意의 集合에 Closeness Structure를 導入하여 Convergence Structure와의 關係를 밝혔는데 本 論文에서는 Closeness 空間 (X, I)의 部分集合 Y가 X上의 Closeness Structure I'에 對한 相對 Closeness Structure를 갖기 爲한 條件 및 Closeness 部分空間과 Convergence 部分空間과의 關係를 考察하였다.

The purpose of this note is to introduce the closeness structure and to consider the hereditary properties of a closeness space.

In section 1, after stating several elementary properties of operations on the power set of a set, we shall introduce the closeness structure which was considered by Kasahara [1]. Therefore, some theorems in section 1 would be found in [1]. In section 2, we shall consider the subspace of a closeness space.

Throughout this note, the power set of a set X will be denoted by P(X) and the value of a mapping $\alpha:P(X)\to P(X)$ at $A\equiv P(X)$ by A^{α} . The complement of $A\equiv P(X)$ in X will be written A^{α} . A mapping $\alpha:P(X)\to P(X)$ is called *monotone* if $A\subseteq B$ implies $A^{\alpha}\subset B^{\alpha}$ for every $A,B\equiv P(X)$.

1. Throughout this section, X denotes an arbitrary set. Let $\alpha: P(X) \to P(X)$ be a mapping. For each $x \in X$, we put

$$\Phi_{\alpha}(x) = \{A \in P(X) | x \notin A^{c\alpha}\}.$$

Evidently Φ_{α} is a mapping of X into P(P(X) = PP(X)) and the following two statements hold:

- (1) $\Phi_{\alpha}(x) \neq \phi$ if and only if $x \notin \bigcap \{A^{\alpha} | A \in P(X)\}$.
- (2) $\phi \notin \Phi_{\alpha}(x)$ if and only if $x \in X^{\alpha}$.

Moreover, if α is monotone then the following two statements hold:

- (3) $x \in \{x\}^{\alpha}$ if and only if $A \subseteq A^{\alpha}$ for every $A \in P(X)$.
- (4) If $A \in P(X)$ then $A^{\alpha} = \{x \in X \mid S \mid A \neq \phi \text{ for every } S \in \Phi_{\alpha}(x)\}$.

Let $\P: X \rightarrow PP(X)$ be a mapping. For each $A \in P(X)$, we put

$$A^{k(\Psi)} = \{x \in X \mid S \cap A \neq \emptyset \text{ for every } S \in \Psi(x)\}.$$

Evidently $k(\mathbf{F})$ is a monotone mapping of P(X) into itself. And as an immediate consequence of (4), we have the following statement:

(5) If $\alpha:P(X)\to P(X)$ is monotone then $\alpha=k(\Phi_{\alpha})$.

For every subset T of P(X), we put

 $[T = \{A \in P(X) | A \text{ contains at least one member of } T\}.$

Then by (4) and (5), we have the following two statements:

(6) Let $\Psi: X \rightarrow PP(X)$ be a mapping, then

$$\Phi_{k(\Psi)}(x) = [\Psi(x)]$$
 for every $x \in X$.

(7) If $\alpha:P(X)\to P(X)$ is monotone, then

$$[\Phi_{\alpha}(x)] = \Phi_{\alpha}(x)$$
 for every $x \in X$.

DEFINITION. A mapping $\alpha:P(X)\to P(X)$ is called a *semiclosure* on X if it satisfies the following conditions:

- (a) $\phi^{\alpha} = \phi$ and $X^{\alpha} = X$.
- (b) $(A \cup B)^{\alpha} = A^{\alpha} \cup B^{\alpha}$ for every $A, B \in P(X)$.

THEOREM 1 If $\alpha:P(X)\to P(X)$ is a semiclosure on X, then $\Phi(x)$ is a filter on X for each $x\in X$.

PROOF. Let $x \in X$. Then $x \notin \phi^a$. Hence by (1), $\Phi_a(x) \neq \phi$; by (2), $\phi \notin \Phi(x)$. On the other hand, if $A \subseteq B$ where $A \cdot B \in P(X)$, then $A^a \cup B^a = B^a$. Hence α is monotone. Thus by (7), $[\Phi_a(x)] = \Phi_a(x)$. Now if $A \cdot B \in \Phi_a(x)$. then since $x \notin A^{c^a}$ and $x \notin B^{c^a}$, we have

$$x \notin A^{c\alpha} \mid B^{c\alpha} = (A^c \mid B^c)^{\alpha} = (A \cap B)^{c\alpha}$$

which shows that $A \cap B = \mathcal{D}_{\alpha}(x)$. This completes the proof.

DEFINITION. Let Γ be a set of semiclosures on a set X. The ordered pair (X,Γ) is called a *closeness space*, and Γ is called a *closeness* on X if the following conditions are satisfied:

- (C1) For every $x \in X$, there exists an $\alpha \in \Gamma$ such that $x \in \{x\}^{\alpha}$.
- (C2) For every $\alpha, \beta \equiv \Gamma$, there exists a $r \equiv \Gamma$ such that $A^a \cup A^\beta \equiv A^r$ for every $A \equiv P(X)$.

Let Γ, Γ' be two closeness on a set X. We say that Γ' is finer than Γ (or Γ is coarser than Γ') if for every $x \equiv X$ and for every $\alpha \equiv \Gamma$, there exists a $\beta \equiv \Gamma'$ such that $\Phi_{\delta}(x) \subset \Phi_{\alpha}(x)$.

By THEOREM 1, we have the following theorem (theorem 3 in [1]), which shows that every convergence structure can be descrived by a closeness structure.

THEOREM 2. Let X be a set. For each closeness Γ on X, there exists a convergence structure τ on X such that, for every $x \in X$, $\Psi \in \tau(x)$ if and only if $\Phi_{\alpha}(x) \subset \Psi$ for some $\alpha \in \Gamma$.

2. Let Y be a subset of a set X. For any semiclosure $\alpha: F(X) \to F(X)$, define a mapping $\alpha': P(Y) \to P(Y)$ by taking

$$A^{\alpha}' = A^{\alpha} \cap Y$$
 for every $A \in P(Y)$.

Then α' need not to be a semiclosure on Y, but the following lemma holds:

LEMMA 3. Let Y be a subset of a set X. If $\alpha:P(X)\to P(X)$ is a semiclosure on X such that $A\subset A^a$ for every $A\subset P(X)$. Then $\alpha':P(Y)\to P(Y)$ is a semiclosure on Y.

PROOF. Clearly $\phi^{\alpha} = \phi$. Since $Y \subseteq Y^{\alpha}$, $Y^{\alpha} = Y^{\alpha} \cap Y = Y$. On the other hand, for every $A, B \in P(Y)$, we have

$$(A \sqcup B)^{\alpha} = (A \sqcup B)^{\alpha} \cap Y = (A^{\alpha} \sqcup B^{\alpha}) \cap Y = (A^{\alpha} \cap Y) \sqcup (B^{\alpha} \cap Y) = A^{\alpha} \sqcup B^{\alpha}.$$

This completes the proof.

Let Y be a subset of a set X. For any closeness Γ on X, we put

$$\Gamma_{\mathbf{Y}} = \{\alpha' : P(Y) \rightarrow P(Y) | \alpha \in \Gamma\}.$$

Then we have

THEOREM 4. Let Y be a subset of a set X. Let Γ be a closeness on X such that for each $\alpha \in \Gamma$ and for each $A \in P(X)$, $A \subset A^{\sigma}$. Then Γ_Y is a closeness on Y.

PROOF. By LEEMA 3, Γ_Y is a set of semiclosures on Y. By (3), Γ_X satisfies (C1). On the other hand, for every $\alpha', \beta' \in \Gamma_Y$, there exist $\alpha, \beta \in \Gamma$ such that $A^{\alpha'} = A^{\alpha} \cup Y$ and $A^{\beta'} = A^{\beta} \cap Y$ for every $A \in P(Y)$. Hence there exists a $T \in \Gamma$ such that $A^{\alpha} \cup A^{\beta} \subset A^{\gamma}$ for every $A \in P(X)$. Thus there exists a $T' \in \Gamma_Y$ such that $A^{\gamma'} = A^{\gamma} \cap Y$ for every $A \in P(Y)$. And we have

$$A^{\alpha} \cup A^{\beta} = (A^{\alpha} \cap Y) \cup (A^{\beta} \cap Y) = (A^{\alpha} \cup A^{\beta}) \cap Y \subset A^{r} \cap Y = A^{r}$$

This completes the proof.

This Γ_Y will be called the relative closeness on Y with respect to Γ . The closeness space (Y, Γ_Y) will be called a subspace of (X, Γ) .

As an immediate consequence of THEOREM 2 and 4, we have

THEOREM 5. Let (Y, Γ_r) be a subspace of a closeness space (X, Γ) . Let τ, τ_r be the convergence structures induced by Γ, Γ_r , respectively. If τ_r' is the relative convergence structure on Y with respect to τ , then $\tau_r = \tau_r'$.

REFERENCE

(1). Shouro Kasahara, Closeness Spaces and Convergence Spaces, Proc. of Japan Academy, Vol. 50, No.4 (1974).

(Chonnam National University)