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ON QUILLEN'S DEFINITION OF HIGHER K-THEORY

By WUHAN LEE, TAIKYUN KWON AND DoNGPYO CHl*l

I. Introduction.

The purpose of this paper is to introduce basic facts on Algebraic K­
Theory. As well known, the general definition of higher K given by Qui­
lIen [3J, is a very noble amalgamation of homotopy theory and category
theory. Therefore we start with giving basic results of both fields which we
need.

11. Topological background.

The basic topological tool for our purpose is, so called, a simplicia1 com­
plex and its geometric realization. We will follow, more or less, Milnor
[1].

A simplicial complex K conists of a set {v} of vertices and a set {s} of
finite nonempty subsets of {v} called simplexes such that

a) Any set consisting of exactly one vertex is a simplex
b) Any nonempty subset of a simplex is a simplex

A simplex s containing exactly q+ 1 vertices is called a q-simplex. If"s'Cs
then s' is called a face of s.

Then the following facts are obvious:
i) If s is a si!1lplex of a simplicia1 complex K, the set of all proper faces

of s is a simplicial complex denoted by s.
ii) If K is a simplicia1 complex, its q-dimensional skeleton Kq is defined

to be the simp1icia1 complex consisting of all p-simp1exes of K for psq
iii) Given a set X and a collection ~= {W} of subsets of X, the nerve

of~, denoted by K(~), is the simplicial complex whose simp1exes are finite
nonempty subsets of ~ with nonempty intersection. Thus the vertices of
K(~) are the nonempty elements of 5m.

iv) Let I be a partially ordered set Then there is a simplicia1 complex
whose set of vertices is I and whose simplexes are finite nonempty totally
ordered subset {io, it> ... , i q} such that ioS i l S ... S iq•

we can define obvious definitions of subcomplex and simplicia1 maps be-

*) Supported by the Ministry of Education Research Fund., 1979-1980.



26 W. H. Lee, T. Y. Kwon and D. P. Chi

tween simplicial complexes.
Furthermore, given AcX, ~= {W} a collection of subsets of a set X,

and let KA(~) be the collection of finite nonempty subsets of ~ whose in­
tersection meets A in a nonempty subset, then K A (~) is a subcomplex of
the nerve K (~).

Now let us give the final material in topology for our purpose, that is,
geometric realization of a simplicial complex K, denoted by \K I. As a set,
IKI is given as follows:' KI is the set of all functions "a" from the set of
vertices to the unit interval I such that

i) For any a, {vEKla(v) *O} is a simplex of K (in particular, a (v) *0
for only a finite set of vertices).

ii) For any a, L:a(v) =1, where a(v) is called the vth barycentric coor-
veK

dinate of a.
Now we are giving topology to IK I. First we give the metric topology on

IK I defined by the following metric.

[ ]

1/2
dCa, m= L: la(v) -rS(V)!2

veK

and it is denoted by IKid' We define another topology on IK I. For sE K,
the closed simplex IsI is defined by

\sl = {aE IKlla(v) *0 =? vEs}.

Hence if s is a q-simplex, Is I is in one-to-one correspondence with the set
{xERq+lIO~Xi~l, L:xi=l}. Also it is easy to see that Isrldn IS21d is either
empty or ISI nS21 d. Hence the family {Is1I s simplex of K} satisfies the de­
finition of closed set of topology. This topology is called coherent topology.
K with the coherent topology is called geometric realization of K. Then the
following facts are obvious:

i) A function f: IKI - X, where X is a topological space, is continuous
in the coherent topology if any only if f 1Isi: Isi - X is continuous for
every sEK.

ii) IK I is I a normal Hausdorff space.
Our basic result in this respect is the following:

THEOREM. (due to MiInor). Let KXK' be the cartesian prodU(;t of two
simplicial complexes, that is,

(KXK')n=KnXK'n'

The projection maps p: KXK'-K and p' : KXK'-K' induces maps Ipl and
III of the geometric realizations. A map 7J: !KXK'I-IKI X IK'1 is deft-
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ned by 1}= Ip IX Ip' i. Then 1J is ho11Wepmorpkism.

It is called the compatibility theorem.

Now we must mention something about classifying space. The essence is
also due to Milnor DJ, [2J. But for our purpose it must be further gene­
ralized. It is due to Segal [4J.

Ill. Algebraic-Topological Background

We generalize simplicial complex defined in 11 in categorical way [4J.
Let (Ord) be the category of finite totally ordered set. Then simplicial com­
plex with values in category (C) is defined as a contravariant functor A:
(Ord)---'>(C). Then we could also define geometric realization L/(A) as follo­
ws: If, for a finite set S, L/(S) denotes the standard simplex with S as set
of vertices, then L/ (A) is obtained from the topological sum of all L/ (S) X
A(S), for all finite ordered sets S, by identifying (x,O*a) ELf(S) XA(S) with
(O*x, a) EL/(T) XA(T) for all xEL/(S), aEL/(T), and 0: S---'>T in (Ord).
Note that S---'>Lf(8), S---'>A(S) are covariant and contravariant functors, resp­
ectively. Then we have Milnor's compatibility theorem also.

To a category(we mean small category), we can associate a simplicial
set NC, which we might call the nerve of (C), by taking the objects of
(C) as vertices and p-simplexes as the diagrams in (C) of the form

Xo---'>X1---'>••• ---'>Xp

The i-th face (resp, degeneracy) of this simplex is obtained by deleting the
object Xj (resp. replacing X j by id : Xj---,>Xj) in obvious way. Then classi­
fying space of (C), denotes by BC, is the geometric realization of NCde­
fined as above. Then compatibility theorem says that

B(CXC') =BC X BC'.

Let G be a topological group. For G, we could define a category (G) as
follows: ob(G)=* (point), mor(G)=G. N(G) is given by NGk=Gx ... XG
(k times). And B(G) is exactly classifying space of G originally defined by
Milnor.

Let X be an object of (C). Using X to denote also the corresponding
o-cell of BC, we have a family of homotopy groups

1Cj(BC, X), i:2:0,

which will be called the homotopy groups of Cc) with base point X, and de­
noted simply by 1Cl(C, X). We will see that this abstract definition of ho­
motopy group plays fundamental role in our definition of higher K.
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Now let us give some basic facts about BC.
i) B(CXC')-BCXBC' is a homeomorphism.
H) A natural transformation 0 : f-g of functors from (C) to (C') induces

a homotopy BCXI-BC' between Bf and Bg.
Hi) If a functor f has either a left or a right adjoint, then Bf is a homo­

topy equivalence.

IV. Algebraic preliminaries.

We give some definitions which are due to Quillen.
Exact categories: Let (M) be an additive category which is embedded as

a full sub-category of an abelian category (A), and suppose that (M) is
closed under extensions in (A) in the sense that if an object A of (A) has
a suboject A such that A' and AIA' are isomorphic to objects of (M), then
A is isomorphic to an object of (M).

Let (E) be the class of sequences
i j

.0 - M' -1\11- M"-O

in (M) which are exact in the abelian category (A). We call a map in
(M) an admissible monomorphism (resp. admissible epimorphism) if it occurs
as the map i (resp. j) of some member of (E). And they are denoted by
M'>--+M and M-M" respectively.

Then the class (E) has the following properties:
i) Any sequence in (M) isomorphic to a sequence in (E) IS III (E). For

any M', M" in (M), the sequence

0-M'- M'(£)M"-M"-O

is in (E).
ii) The class of admissible epimorphisms is closed under composition and

under base change by arbitrary maps in (M). Dually the class of admissible
monomorphisms is closed under composition and under cobase change by
arbitrary maps in (M).

iii) Let M-M" be a map possessing a kernel in (M). If there exists a
map N-M in (M) such that N-M-M" is an admissible epimorphism,
then M-M" is an admissible epimorphism. Dually for admissible monomor­
phisms, the above holds.

DEFINITION: An exact category is an additive category (M) equipped with
a family (E) of sequences of the form O-M'-M-M"-O, called the short
exact sequences of (M), such that the properties i), ii), iii) hold. An exact
functor F: (M)-(M') between exact categories is an additive functor car-
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rying exact sequences in (M) into exact sequences in (M').

Now we give a fundamental definition. Of course it is defined by Quillen.
The category Q(M). Here Q implies Q of Quillen (of course Quillen did
not say it himself).

Let (M) be an exact category defined above, we form a new category
Q (M) having the same objects as CM) but morphism defined in the follow­
ing way: Let M and M' be objects in (M) and consider all diagrams

t

N~M'

M

where j is an admissible epimorphism and i is an admissible monomorphism.
We say

j i j
M-N~M''"'-'M-N'~M'

if

j
M-N~M'

11 q) I 11

M-N'~M'

there exist isomorphism q) : N-+N' with commutative diagram. Then mor­
phism from M to M' in Q(M) is defined by an isomorphism classes of the­
se diagrams. When a morphism from M' to M" is represented by the di-

j' i'
agram M'-N'~M", then the composition of this morphism with the
morphism from M to M' is the morphism represented by the pair j.pr},
i .#2 in the diagram

Then it is clear that composition is well-defined and associative. And we
assume Q(M) is a well defined category (i. e., isomorphism class of diagram
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j
M-N>-----';M' form a set).

Now we are ready for the definition of higher-K's.

V. Definition of higher K-groups

DEFINITION: The higher K -groups for a small exact category (M) are de­
fined as follows:

Ki(M) -11:;+1 (B(Q(M», 0)
def

THEOREM 1: 1C1 (B (Q (M) ), 0) is canonically isomorphic to the Grothendieck
group Ko(M).

THEOREM 2: K; is a functor from exact categories and exact functors to
abelian groups.

EXAMPLE 1: Let A be a ring with 1 and peA) denote the additive cate­
gory of finitely generated projective A-modules. We may regard peA) as
an exact category. We define Ki(A)=K;(P(A». Then this is the usual
definition of higher K-groups of a ring A.

EXAMPLE 2: If X is a scheme, we put Kq(X)=K,,(P(X», where P(X)
is the category of vector bundles over X equipped with the usual notion of
exact sequence.

THEOREM 3. If A is the ri.ng of algebraic integers in a number field F
(finite over Q), then K;A is a finitely generated group for all i>O.

THEOREM 4: Let A be a Dedekind domain with field of fractions F. We
have an exact sequence

K ..+1F----'J'(J)mK..(A/m)-K..A-K..F----'J'•••

where m runs over the nonzero maximal ideals of A.

THEOREM 5. Let Fq be the finite field of q elements.

Then KoFq=Z, K2;Fq=Ofor all i;;;::l. K U - 1Fq is cyclic of order qLl for i;;;::l.

THEOREM 6. Let A be the ring of integers in a number field having r1 real
and r2 complex places. Then the dimension of K ..A®Q is

as n == 0, 1, 2, 3 (mod 4), respectively.
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THEOREM 7. Let (t]) be a full subcategory of (Ifll) such that
(i) for any exact sequence in (rt/,),

O~M'~M~M"~O

we have
a) M', M"E (t]) => ME (t])
b) MEt]) => M'Et])

(ii) for every object M" of (Ifll), there exists an exact sequence O~M'­
M-M"-O with M and M' in M".

Then the indurced map IQ (t]) I-IQ(Ifll) I is a homotopy equivalence.
Especially Kj((t])=Kj((Ifll)) for every i~O.

THEOREM 8. Let tfJ be a finite dimensional Lie algebra over a field k and
U(tfJ) its enveloping algebra. Then Kj(k) ?:E.Kj(U(tfJ» for every i~O.
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