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Introduction

Ki ([8], [4], [5]), Chen ([2]) and Yano (7], [8], [9]) have recently
studied infinitesimal variations of submanifolds. On the other hand, Ki and
Okumura have studied infinitesimal variations of generic submanifolds of a
Kaehlerian manifold.

The purpose of this paper is to study infinitesimal variations of generic
submanifolds of the ambient manifold with normal (f, g, », v, 2)-structure.
In 81, we compare some properties of generic submanifolds of the ambient
manifold with normal (f, g, 4, v, A)-structure. In §2, we prove the funda-
mental formulas in the theory of infinitesimal variations, that is, which
carry a generic submanifold into a generic submanifold. In §3, we study
f-preserving variations and compute the variations of #,v, and 2. In §4,
we find the conditions that the variation vectors are parallel and prove com-
plete hypersurface of an even—dimensional sphere is the product of two spheres
under some conditions.

§1. Generic submanifolds of a manifold with normal (£, g,u,v,2)-
structure

Let M?= be a real 2m~dimensional manifold covered by a system of coor-
dinate neighborhoods {U;z%, in which a manifold with a tensor field f of
type(1,1), a Riemannian metric g, two 1-forms #, v and a function A sati-
sfying ‘
fifit=—0+uul+o;0h,
fifigs=g5—uju;—v;0;

wfif=Av; filut=—2o"

wut =o' =1— A2, ut =0,

1.1
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f* gji, u;, v; and 1 being respectively components of f, g, »,v and A with
respect to a local coordinate system, w* and v* being defined by u;=g;u’
and v;=g;v* respectively, where here and in the sequel the indices &, 1,7,
-- run over the range {1,2,3,---,2m}, then the structure is called an
(£, g, u, v, A)—structure ((5], [8]). It is known that such a manifold is even-
dimensional ([5]). If we put f;;=fi’gw we can easily see that f; is
skew—-symmetric.
We put

S; =L £, f1ji*+ W jui—V ;) ub+ 7 jo;—Vv;) ot

[ f,f]1;i* denoting the Nijenhuis Tensor formed with f;* and J; the operator
of covariant differentiation with respect to the Christoffel symbols 7I';# for-
med with g;;. If S;# vanishes, then the (f, g, #, v, 1)-structure is said to be
normal ([8)).

The following theorem is well known ([8]).

THEOREM A. Let M?" pe g manifold with normal (f, g, u, v, 2) —structure
satisfying Vj0i—Vo;=2f;i. If the function A(1-2®) does not wvanish almost
everywhere, then we have

Vifit=g;i(@ut—v*) —0;*(du;—v;),
1.2 Viui=—2g;—f i
Aj).zﬂj+¢7)j,

@ being constant. Moreover, if M?" is complete and dim M2 >2, then M?m
is isometric with an even—dimensional sphere.

Let M* be an n~dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {V : ¥4} and with metric tensor g,,,, where here
and in the sequel, the indices a, b, ¢, ... run over the range {1, 1},
assume that M= is isometrically immersed in M?" by the immersion i : M"——+
M?m and identify i{(M®) with M~ itself. We represent the immersion i local-
ly by zt=2%(y2) and put Bs*=0,z*, 0,=0/0y%, which are linearly indepen-
dent vectors of M?" tangent to M®". Since the immersion i is isometric,
we have

(1.3) gcb=gj£Bchbi-

We denote by C,* 2m-» mutually orthogonal unit normals to M*», where
here and in the sequel, the indices z, y, 2, ... run over the range {n+1, n+2,
v.., 2m}. Then the equations of Gauss are written as

(1- 4) 4 cBbh = hcbzcxh:



Infinitesimal variations of generic submanfolds of a manifold with normal (f, g, %, v, 2) ~structure 11

V. being the operator of van der Waerden—Bortollotti covariant differentiation
along M* and h.* are second fundamental tensors of M* with respect to the
normals C,% and those of Weingarten as

(1' 5) Vcczh=—hsznh7

where RS, = h.,8" = hig..,, (2" ={(gw) ! and g., denoting the metric
tensor of the normal bundle.

If the transform by f of any vector tangent to M* is always tangent to
M?*, that is, if there exists a tensor field f3¢ of type (1,1) such that

(1.6) Si#Byi =f2B>—f3*C >,

we say that M?” is generic in M2,
For the transform by f;* of normal vectors C,/, we have equations of the
form

(1- 7) fihcyizfyaBah

where f,t=f;*gbg,,, which can also be’ written as f,,=—f,. We put
wt=usBl+u"C,h,

1.8
vP=paB+v?C },

w* and v*_being vector fields of M", 4* and »* being functions of M=

From (1.1), (1.6), (1.7) and (1.8), we find

(1.9 Fof =5 o = — 0yt upu®~+v0%,
(1.10) Jf &= —upu®—vpv%,

(1. 1D Iy =0y~ uyu®—vy07,
(1.12) Wie+utf 2= — v, Vif e+ vif A= Aud,
(1.13) wf F=Av7, vifF=—u",

(1. 14) woutuut=1-2, vptt+ver=1—22
(1. 15) g+ u v =0.

We also have from (1.6), f;iB7By'=Ff."gso. Thus, putting f,%gs,=fu, We
see that f,; is skew—symmetric.

Differentiating (1.6) and (1.7) covariantly along M=, and using (1. 2),
(1.4) and (1.5), we find
(1- 16) V(;fé«a:gcb (¢ua__.va) —‘5ca (¢”b—'vb) '—hcbzfxa"_hcxaszy

(1.17) Vo f55=F%h."— g op ($u® — %),
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(1.18) V.f. y= —0,° (¢“y '_vy) _kcybf 8%
(1.19) f yahca't:hcya Pl

On the other hand, differentiating «*, v* covariantly along M" and using
(1.2), (1.6) and (1.4), we get

(1. 20) V b =uh,*— A0 —of %
(1.21) Vus= —uhei™+ @ f
(1. 22) V ot =v7h, 0 — $ 13,24 f
(1. 23) Vot=—vh"—f

(1. 24) V A=u+dv,.

§ 2. Infinitesimal variations of generic submanifolds

We consider an infinitesimal variation of generic submanifold M* of a ma-
nifold M2?» with normal (f, g, %, v, A)-structure given by

@D zZh=zh(y) +E4(y)e,

where &4(y) is a vector field of M2?™ defined along M* and ¢ is an infini-
tesimal. We then have

(2.2) Byt=B;#+ (06",

where Bj*=0,7" are n linearly independent vectors tangent to the varied sub-
manifold. We displace B;* parallelly from the varied point (Z*) to the ori-
ginal point (z¥). We then obtain the vectors

Byh=Bgt+ 12 (z+86) &/ Bye
at the point (%), or

2.3) Byt =B+ (F6h)e,
neglecting the terms of order higher than one with respect to ¢, where
(2- 4) 4 b§h=3b5h+]’ jithj &i.

In the sequel we always neglect terms of order higher than one with res-
pect to . Thus, putting

(2.5) 3Byt= Byt — B,
we have from (2.3)
(2.6) OByt=(V£*)e.

Putting
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2.7 Eh=EaBh, - E2C b,
we have
(2. 8) V;,Eh= (nga_hbxagz) Bah+ (ngx_l_hbazfa) C,h.

Now we denote by C,* 2m—» mutually orthogonal unit normals to the
varied submanifold and C. the vectors obtained from C,* by parallel displa-
cement of C,* from the point (z*) to (z%). Then we have

(2.9 Cy"=6y"+1’j,-" (z+Ee)&iC fe.

We put

(2. 10) 3C,p=C,—C,h

and assume that 6 C,* is of the form

(2.11) OC =1 e= (1,2B*+1,7C ).
Then, from (2.6), (2.10) and (2.11), we have

(2.12) Ch=C,k—I;48iC e+ (7,2Bh+1,7C,*)e.

A pplying the operator 8 to B,/C,g;;=0 and using (2.7), (2.8), (2.11) and
6 g;;=0, we find

2. 13) (VbEy”"_hbayEa) +77yb=01
where §,=£g,, and 7,,=7,°gs O
(2 14) ﬂyaz - (V a5y+hbyaéb)a

Ve being defined to be F2=g*F, Applying the operator 6 to C,/C,g;;i=0,,
and using (2.11) and 6 g;;=0, we find

(2.15) Dyz+ N2y=0,

where Nyz="y L2z

Suppose that an infinitesimal variation given by (2.1) carries a submani-
fold into another submanifold and the tangent space of the original subm-
anifold at a point and that of the varied submanifold at the corresponding
point are parallel. Then we say that such a variation is parallel ([7]).
- We assume that the infinitesimal variation (2.1) carries a generic subma-
nifold into a generic submanifold, that is,

(2.16) F#(x+&)C,i are linear combination of Bjt.
Using the first equation (1.2), (1.6) and (2.12), we see that
f ih (.Z' + S6) Z--:yi= (f ih+5jajf ihe) (Cyi—r jtiéjcyt5+ EﬂyaBai—*—ﬂyzCzi]S)



14 Eulyong Pak and Yeong Wu Choe
=f#C,i—I';}5C Hf pe+9,°f #Bie-+1,7f FCie+E81 (0;£ 1) C e,
which and (2.12) imply
2.17) f#+&e)C)
=F*+ L2+ 0% ) B =0, FCt — £, (0u57)
—IP8if 2BE+E, (dut —v*) — &R ($uy—v,) e,
or, using (1.6), (1.7), (1.8), (2.7) and (2. 8),
(2.18)  f#(z+&)Ci=f,2B.}
+ 0,5 2 =6 Ty + ko 25€) — £, (V&% — Ry ,96%)
+&, (put—v*) —§(duy—v,) 1B, e
L Vo€ + hey€%) —f,F (V 567+ hpe™6%)
+&, (Pu* —v*) —E% (du,—1v,) 1C te.
Thus, we can see that (2. 16) is equivalent to
(2.19) &, (pu*—v%) —& (du,—v,)
=F 2 (V€= + hpa™E?) — 3= (P 5E 4+ hoy®6) .
An infinitesimal variation given by (2.1) is called a generic—preserving

variation if it carries a generic submanifold into a generic submanifold. Thus,
we have

THEOREM 2.1. In order for an infinitesimal variation of a manifold with
normal (f, g, u, v, A)—structure to be a generic—preserving, it is mecessary and

sufficient that the variation (2.1) satisfies (2.19).

COROLLARY 2.2. In order for an infinitesimal variation of an even—dimen-
sional sphere to be a generic—preserving, it is necessary and sufficient that the
variation (2. 1) satisfies

(2. 20) §2y,—& ot =12 (V .57+ b “EY) — f5* (V6 haybE®)

THEOREM 2. 3. If an infinitesimal variation of the submanifold of the ma-
nifold M?® with normal (f, g, u, v, A)—structure is normal and u*, v* are tan-
gent to the submanifold M". Then the variation is a generic—preserving.

COLOLLARY 2.4. If an infinitesimal wvariation of the submanifold of an
even—diimensional sphere S?* is parallel and " is tangent to the submamfold'
Mm, Then the variation is a generic—preserving.
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§3. The variation of structure

Suppose that an infinitesimal variation #*=x*4-&% is a generic-preserving
variation. Then putting

3.1 F#(x+Ee) By = (fie+0fs*) B — (£ +0f55) C.h,
we have from (1.6), (1.7), (2.6) and (2.7)
(3 2) 5f b =[f & (V bEe"‘hbxesz) —f5° (V eSa__hezaE.z)

Ff o=+ ke 6°) —f5* (Vo€ o+ o, %E°)
+& (Put—v2) + & (puy—vp) Je

and

(3.3) of =L f?0" —f & Vo2~ hy,28%) —F12 (V 5%+ ko %6°)
+& (= —v®) —&* (puy—v3) Je.

If a generic-preserving variation preserves f;* and &;%, then we say that
it is f-preserving.

PROPOSITION 3. 1. A generic-preserving variation is f-preserving if and only
if the brackets of (3.2) and(3.3) vanish.

Now applying the operator d to (1.3) and using (2.6), (2. 8) and 6 gj;=
0, wefind ([70)

(3' 4) chb:: (chb_}' ngc'—thszx>ea
from which,
(3.5) Ogha= — (Fbfat-[afb—9p balz)e,

Assume that an infinitesimal variation F*=2z%#+-&% is generic-preserving.
Hence, we have

(3. 6) f ibé yi———‘ yaﬁah.
From (2.18), we obtain
(3- 7) 6f yi = [f .7:‘1‘77_7'z —f & (Vbéy -+ heybEG) —F. yb (V bsa - hbzasz)

+&,(ut—v*) —E4(gu,—vy) Je.
PROPOSITION 3. 2. Suppose that an infinitesimal variation is a generic—pre-
serving. Then the variation of f,° is given by (3.7).

Now we get a vector field #* which is defined intrinsically along the de-
formed submanifold. If we deplace @* back parallelly from the point (z%) to
(z*), we obtain
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wh=ah+ I} (z-+E) &,

and hence forming

Ouh =ik — gt

we find
3.8) Out =gk —ubtI'; AT ute.
Further we have, from (1.8) and (3.8),
(3.9 0 (uB 4 urC By =& (0t e+ I ;567 u'e,
which and (2.6), (2.7) and (2.12) imply
3. 10) our=—[wb (V15— hp,%6%) —u? (V2 -+ by, 2E2)

+ A&a+- @b o+ pE=f 2 Je
and
(3.11) Gur=— [ b (V 167+ hp,76%) +u9n, 2+ 267+ pE0b;* Je.
From which, using (3.4),
(3.12) Oup=— [ttt (—V 5ot hpeiE®) — 0 (VWi )+ b 5pS)

+ 285+ G 5+ 9% 5 Je.

and
(3.13) Ouy=—[ub (7 155+ hpey§*) + 0702y Ayt 663, Je.

Thus we have

PROPOSITION 3.3. Under an infinitesimal variation (2.1) of the submani-
fold, the variations of u, u®, uy and u, are given by (3.10), (3.11), (3.12)
and (3.13) respectively.

Similarly we get a vector field #* which is defined intrinsically from the
point (%) to (z%), we have

ﬁhzﬁh‘l“[,jih ($+€G) Ejaiﬁ

and hence forming

(3.14) dvh=1k—ph,
we find
(3.15) Ovh =0k —pb4-I"; Mivfe,

We have, from(1.8) and (3.15),
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(3.16) 0 (v°Br+v°C 1) =% (0oh) e+ I ote,

which and (1.2), (2.6) and (2.16) imply

3E.17) 0v*=— [P (V4 — hp,76%) —v? (V6 4+ by, *EY)

+pAGe—E0f e —E2f 7 e

and

(3.18) 0v*=—[* (V&= + k%) + v, "+ 85+ A6 Je.

From which, using (3.4), we obtain

(3.19) 00 =[0* (V1€ —hpest®) — 0¥ Py g+ hepy§)
@A —Ef o —Ef s e

and ‘ Co -

(3.20) - do,=—[P (Vs€y+ Rsay€) + vy, + E¥f s+ A5, Je.

Thus, we have

PROPOSITION 3. 4. Under an infinitesimal variation (2.1) of the submanifold,
the variation of v% v%, vy and v, are given by (3.17), (3.18), (3.19) and
(3. 20) respectively.

Finally, to obtain the variation of 4, applying the operator § to wu,+ vz,
=1—42 and using (3.10), (3.11), (3.12) and (3.13), we obtain

3. 21) 02= [ (et ¢1’a) ot (u.z:+ ¢v$) e
Thus we have

PROPOSITION 3.5. Under an infinitesimal variation (2.1) of the submani-
fold, the variation of A is given by (3.21).

§4. Infinitesimal generie variation preserving 7,°

In this section we only consider that an infinitesimal generic variation
(2.1) satisfying (2. 20) of a submanifold M* of an even-dimensional sphere
§2m Moreover we suppose that this variation is normal and preserving f;°.
Then we have from (3.2)

(4- 1) (hce.t f Ize+ hbe.rf ce) Ez +f c.rV bsx _'f be ds z=(),
from which
(4‘- 2) f cszsz '—f b.z‘V L'E z==()

and
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(4- 3) (hcez-f 5+ Rperf, ) §2=(.

If the vectors #* and v* are tangent to the submanifold, then we have
from (1.10), (1.11) and (1.13)

4.4 =0,

(4.5) Ff=0,5

and

“.6) wf2=0, v*f;"=0,

respectively. Transvecting (4.2) with «° and £,%, we have
4.7 wV =0 or vV E*=0.
Transvecting (4. 2) with f,° and f.,?, we have

(4.8 foif oV £==0.

Substituting (1.9) and (4.7) into (4.8), we obtain V.£*=0. Hence we
have

THEOREM 4. 1. Suppose that an infinitesimal variation of the submanifold
M of an even—dimensional sphere S®* preserving fi* and is mormal. I1f the
vectors ub and o* are tangent to M™, then the variation is parallel.

We suppose that £% are (2m—=) linearly independent normal vectors. Then
we obtain from (4. 3)

(4- 9) h“:c ey hbezf £=0.

When the submanifold M» is a hypersurface of $2%, then (1.9)~(1.15)
become to so-called (f, g, uw, @w)-structure ([47]). In this case the foll-
owing theorem is well-known ([4]).

THEOREM B. Let M?™ ) pe a hypersurface with the induced normal
(f, g, weny, @y ) —structure of a sphere 2™ If 22+ (u,*)2+ (0,*)2#1 (a.e.)
and A#v (a.e.), then M?™1 is product of two spheres, where w,*=u%==y,,
v1*=v’=v,.

From Theorem B. and (4.9), we have

THEOREM 4.5. Let M?77 pe a complete hypersurface of an even—dimensional
sphere S?™ and an infinitesimal variation preserves f3* and is normal. If

24 (*) 2+ (0*)2—1 and R

do not vanish almost everywhere, then we have M 1=_SrX §2m-1-r
where ST is r—dimensional sphere.
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