INFINITESIMAL VARIATIONS OF GENERIC SUBMANIFOLDS OF A MANIFOLD WITH NORMAL (f, g, u, v, λ) -STRUCTURE

By EULYONG PAK AND YEONG WU CHOE*)

Introduction

Ki ([3], [4], [5]), Chen ([2]) and Yano ([7], [8], [9]) have recently studied infinitesimal variations of submanifolds. On the other hand, Ki and Okumura have studied infinitesimal variations of generic submanifolds of a Kaehlerian manifold.

The purpose of this paper is to study infinitesimal variations of generic submanifolds of the ambient manifold with normal (f, g, u, v, λ) -structure. In § 1, we compare some properties of generic submanifolds of the ambient manifold with normal (f, g, u, v, λ) -structure. In § 2, we prove the fundamental formulas in the theory of infinitesimal variations, that is, which carry a generic submanifold into a generic submanifold. In § 3, we study f-preserving variations and compute the variations of u, v, and λ . In § 4, we find the conditions that the variation vectors are parallel and prove complete hypersurface of an even-dimensional sphere is the product of two spheres under some conditions.

§ 1. Generic submanifolds of a manifold with normal (f, g, u, v, λ) structure

Let M^{2m} be a real 2m-dimensional manifold covered by a system of coordinate neighborhoods $\{U; x^h\}$, in which a manifold with a tensor field f of type (1,1), a Riemannian metric g, two 1-forms u, v and a function λ satisfying

(1. 1)
$$\begin{cases} f_{j}^{t}f_{t}^{h} = -\delta_{j}^{h} + u_{j}u^{h} + v_{j}v^{h}, \\ f_{j}^{t}f_{i}^{s}g_{ts} = g_{ji} - u_{j}u_{i} - v_{j}v_{i}, \\ u_{t}f_{j}^{t} = \lambda v_{j}, f_{t}^{h}u^{t} = -\lambda v^{h}, \\ u_{t}u^{t} = v_{t}v^{t} = 1 - \lambda^{2}, u_{t}v^{t} = 0, \end{cases}$$

^{*)} Supported by the Korean Ministry of Education Research Foundation.

 $f_i{}^h$, g_{ji} , u_i , v_i and λ being respectively components of f, g, u, v and λ with respect to a local coordinate system, u^h and v^h being defined by $u_j = g_{ji}u^i$ and $v_j = g_{ji}v^i$ respectively, where here and in the sequel the indices h, i, j, \cdots run over the range $\{1, 2, 3, \cdots, 2m\}$, then the structure is called an (f, g, u, v, λ) -structure ([5], [8]). It is known that such a manifold is even-dimensional ([5]). If we put $f_{ji} = f_j^i g_{ti}$, we can easily see that f_{ji} is skew-symmetric.

We put

$$S_{ii}^{h} = [f, f]_{ii}^{h} + (\nabla_i u_i - \nabla_i u_i)u^h + (\nabla_i v_i - \nabla_i v_i)v^h,$$

 $[f, f]_{ji}^h$ denoting the Nijenhuis Tensor formed with f_i^h and ∇_i the operator of covariant differentiation with respect to the Christoffel symbols Γ_{ji}^h formed with g_{ji} . If S_{ji}^h vanishes, then the (f, g, u, v, λ) -structure is said to be normal ([8]).

The following theorem is well known ($\lceil 8 \rceil$).

THEOREM A. Let M^{2m} be a manifold with normal (f, g, u, v, λ) -structure satisfying $\nabla_j v_i - \nabla_i v_j = 2f_{ji}$. If the function $\lambda(1-\lambda^2)$ does not vanish almost everywhere, then we have

(1.2)
$$\begin{cases} \nabla_{j} f_{i}^{h} = g_{ji} (\phi u^{h} - v^{h}) - \delta_{j}^{h} (\phi u_{i} - v_{i}), \\ \nabla_{j} u_{i} = -\lambda g_{ji} - \phi f_{ji}, \\ \Delta_{j} \lambda = u_{j} + \phi v_{j}, \end{cases}$$

 ϕ being constant. Moreover, if M^{2m} is complete and dim $M^{2m} > 2$, then M^{2m} is isometric with an even-dimensional sphere.

Let M^n be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{V:y^a\}$ and with metric tensor g_{cb} , where here and in the sequel, the indices a, b, c, \ldots run over the range $\{1, 2, \ldots, n\}$. We assume that M^n is isometrically immersed in M^{2m} by the immersion $i:M^n \to M^{2m}$ and identify $i(M^n)$ with M^n itself. We represent the immersion i locally by $x^h = x^h(y^a)$ and put $B_b{}^h = \partial_b x^h$, $\partial_b = \partial/\partial y^b$, which are linearly independent vectors of M^{2m} tangent to M^n . Since the immersion i is isometric, we have

$$(1.3) g_{cb} = g_{ji}B_c{}^jB_b{}^i.$$

We denote by C_y^h 2m-n mutually orthogonal unit normals to M^n , where here and in the sequel, the indices x, y, z, ... run over the range $\{n+1, n+2, ..., 2m\}$. Then the equations of Gauss are written as

$$(1.4) V_c B_b{}^h = h_{cb}{}^x C_x{}^h,$$

 V_c being the operator of van der Waerden-Bortollotti covariant differentiation along M^n and h_{cb}^x are second fundamental tensors of M^n with respect to the normals C_x^h , and those of Weingarten as

$$(1.5) V_{c}C_{x}^{h} = -h_{cx}^{a}B_{a}^{h},$$

where $h_{cx}^a = h_{cbx}g^{ba} = h_{cb}^zg_{zx}$, $(g^{ba}) = (g_{ba})^{-1}$ and g_{zx} denoting the metric tensor of the normal bundle.

If the transform by f of any vector tangent to M^n is always tangent to M^n , that is, if there exists a tensor field f_{b}^a of type (1, 1) such that

$$(1.6) f_i{}^h B_b{}^i = f_b{}^a B_a{}^h - f_b{}^x C_x{}^h,$$

we say that M^n is generic in M^{2m} .

For the transform by f_i^h of normal vectors C_y^i , we have equations of the form

$$(1.7) f_i{}^h C_v{}^i = f_v{}^a B_a{}^h$$

where $f_y^h = f_b^x g^{ba} g_{yx}$, which can also be written as $f_{ya} = -f_{ay}$. We put

(1.8)
$$\begin{cases} u^{h} = u^{a}B_{a}^{h} + u^{x}C_{x}^{h}, \\ v^{h} = v^{a}B_{a}^{h} + v^{x}C_{x}^{h}, \end{cases}$$

 u^a and v^a being vector fields of M^n , u^x and v^x being functions of M^n .

From (1.1), (1.6), (1.7) and (1.8), we find

$$(1.9) f_b{}^c f_c{}^a - f_b{}^x f_x{}^a = -\delta_b{}^a + u_b u^a + v_b v^a,$$

$$(1. 10) f_b{}^a f_a{}^x = -u_b u^x - v_b v^x,$$

$$(1.11) f_{\nu}^{a}f_{a}^{x} = \delta_{\nu}^{x} - u_{\nu}u^{x} - v_{\nu}v^{x},$$

(1.12)
$$u^{b}f_{b}^{a} + u^{x}f_{x}^{a} = -\lambda v^{a}, \quad v^{b}f_{b}^{a} + v^{x}f_{x}^{a} = \lambda u^{a},$$

$$(1.13) u^a f_a{}^x = \lambda v^x, \quad v^a f_a{}^x = -\lambda u^x,$$

$$(1.14) u_{\alpha}u^{\alpha} + u_{\tau}u^{\tau} = 1 - \lambda^{2}, \quad v_{\alpha}v^{\alpha} + v_{\tau}v^{\tau} = 1 - \lambda^{2},$$

$$(1. 15) u_a v^a + u_x v^x = 0.$$

We also have from (1.6), $f_{ji}B_c{}^jB_b{}^i=f_c{}^ag_{ba}$. Thus, putting $f_c{}^ag_{ba}=f_{cb}$, we see that f_{cb} is skew-symmetric.

Differentiating (1.6) and (1.7) covariantly along M^n , and using (1.2), (1.4) and (1.5), we find

$$(1.16) \nabla_c f_b{}^a = g_{cb} (\phi u^a - v^a) - \delta_c{}^a (\phi u_b - v_b) - h_{cb}{}^x f_x{}^a - h_{cx}{}^a f_b{}^x,$$

(1.17)
$$\nabla_{c} f_{b}^{x} = f_{b}^{a} h_{ca}^{x} - g_{cb} (\phi u^{x} - v^{x}),$$

(1.18)
$$\nabla_{c} f_{y}^{a} = -\delta_{c}^{a} (\phi u_{y} - v_{y}) - h_{cy}^{b} f_{b}^{a},$$

$$(1.19) f_y^a h_{ca}^x = h_{cy}^a f_a^x.$$

On the other hand, differentiating u^h , v^h covariantly along M^n and using (1, 2), (1, 6) and (1, 4), we get

$$(1.20) V_c u^a = u^x h_{cx}{}^a - \lambda \delta_c{}^a - \phi f_c{}^a,$$

(1. 21)
$$V_c u^x = -u^a h_{ca}{}^x + \phi f_c{}^x,$$

$$(1.22) V_c v^a = v^x h_{cx}{}^a - \phi \lambda \delta_c{}^a + f_c{}^a,$$

(1. 23)
$$\nabla_{c}v^{x} = -v^{a}h_{ca}{}^{x} - f_{c}{}^{x},$$

$$(1.24) \nabla_c \lambda = u_c + \phi v_c.$$

§ 2. Infinitesimal variations of generic submanifolds

We consider an infinitesimal variation of generic submanifold M^n of a manifold M^{2m} with normal (f, g, u, v, λ) -structure given by

$$(2.1) \bar{x}^h = x^h(y) + \xi^h(y)\varepsilon,$$

where $\xi^h(y)$ is a vector field of M^{2m} defined along M^n and ε is an infinitesimal. We then have

$$(2.2) \overline{B}_b{}^h = B_b{}^h + (\partial_b \xi^h) \varepsilon,$$

where $\overline{B}_b{}^h = \partial_b \overline{x}^h$ are *n* linearly independent vectors tangent to the varied submanifold. We displace $\overline{B}_b{}^h$ parallelly from the varied point (\overline{x}^h) to the original point (x^h) . We then obtain the vectors

$$\tilde{B}_b{}^h = \bar{B}_b{}^h + \Gamma_{ji}{}^h (x + \xi \varepsilon) \xi^j \bar{B}_b{}^i \varepsilon$$

at the point (x^h) , or

$$(2.3) \tilde{B}_b{}^h = B_b{}^h + (V_b \xi^h) \varepsilon,$$

neglecting the terms of order higher than one with respect to ε , where

In the sequel we always neglect terms of order higher than one with respect to ε . Thus, putting

$$\delta B_b{}^h = \tilde{B}_b{}^h - B_b{}^h,$$

we have from (2.3)

(2.6)
$$\delta B_b{}^h = (\nabla_b \hat{\xi}^h) \varepsilon.$$

Putting

12

Infinitesimal variations of generic submanifolds of a manifold with normal (f, g, u, v, λ) -structure 13

$$\xi^h = \xi^a B^h_a + \xi^x C_x^h,$$

we have

$$(2.8) V_b \xi^h = (V_b \xi^a - h_{bx}{}^a \xi^x) B_a{}^h + (V_b \xi^x + h_{ba}{}^x \xi^a) C_x{}^h.$$

Now we denote by $\overline{C}_y{}^h \ 2m-n$ mutually orthogonal unit normals to the varied submanifold and $\widetilde{C}_c{}^h$ the vectors obtained from $\overline{C}_y{}^h$ by parallel displacement of $\overline{C}_y{}^h$ from the point (\bar{x}^h) to (x^h) . Then we have

(2.9)
$$\tilde{C}_{\nu}^{h} = \overline{C}_{\nu}^{h} + \Gamma_{ii}^{h} (x + \xi \varepsilon) \xi^{j} \overline{C}_{i}^{i} \varepsilon.$$

We put

$$(2. 10) \delta C_y^h = \tilde{C}_y^h - C_y^h$$

and assume that δC_y^h is of the form

(2.11)
$$\delta C_y{}^h = \eta_y{}^h \varepsilon = (\eta_y{}^a B_a{}^h + \eta_y{}^x C_x{}^h) \varepsilon.$$

Then, from (2.6), (2.10) and (2.11), we have

$$(2.12) \overline{C}_{y}^{h} = C_{y}^{h} - \Gamma_{ji}^{h} \xi^{j} C_{y}^{i} \varepsilon + (\eta_{y}^{a} B_{a}^{h} + \eta_{y}^{x} C_{x}^{h}) \varepsilon.$$

A pplying the operator δ to $B_b{}^j C_y{}^i g_{ji} = 0$ and using (2.7), (2.8), (2.11) and $\delta g_{ji} = 0$, we find

(2.13)
$$(\nabla_b \xi_y + h_{ba} y \xi^a) + \eta_{yb} = 0,$$

where $\xi_y = \xi^z g_{zy}$ and $\eta_{yb} = \eta_y^c g_{cb}$, or

(2.14)
$$\eta_{y}^{a} = -(\nabla^{a}\xi_{y} + h_{by}^{a}\xi^{b}),$$

 $abla^a$ being defined to be $abla^a = g^{ac}
abla_c$. Applying the operator δ to $abla_y^i C_x^i g_{ji} = \delta_{yx}$ and using (2.11) and $abla_{ji} = 0$, we find

$$(2.15) \eta_{yx} + \eta_{xy} = 0,$$

where $\eta_{yx} = \eta_y^z g_{zx}$.

Suppose that an infinitesimal variation given by (2.1) carries a submanifold into another submanifold and the tangent space of the original submanifold at a point and that of the varied submanifold at the corresponding point are parallel. Then we say that such a variation is *parallel* ([7]).

We assume that the infinitesimal variation (2.1) carries a generic submanifold into a generic submanifold, that is,

(2.16)
$$f_i^h(x+\xi\varepsilon)\overline{C}_y^i$$
 are linear combination of \overline{B}_b^h .

Using the first equation (1.2), (1.6) and (2.12), we see that

$$f_{i}{}^{h}(x+\xi\varepsilon)\,\overline{C}_{y}{}^{i}\!=\!(f_{i}{}^{h}\!+\!\xi^{j}\partial_{j}f_{i}{}^{h}\varepsilon)\,(C_{y}{}^{i}\!-\!\varGamma_{jt}{}^{i}\xi^{j}C_{y}{}^{t}\varepsilon\!+\!\big[\eta_{y}{}^{a}B_{a}{}^{i}\!+\!\eta_{y}{}^{x}C_{x}{}^{i}\big]\varepsilon)$$

$$= \! f_i{}^h\!C_y{}^i - \! \varGamma_{jt}{}^i\!\xi^j\!C_y{}^t\!f_i{}^h\!\varepsilon + \! \eta_y{}^a\!f_i{}^h\!B_a{}^i\!\varepsilon + \! \eta_y{}^x\!f_i{}^h\!C_x{}^i\!\varepsilon + \! \xi^j(\partial_jf_i{}^h)C_y{}^i\!\varepsilon,$$

which and (2.12) imply

$$(2. 17) f_i{}^h(x+\xi\varepsilon)\overline{C}_y{}^i$$

$$=f_y{}^a+\left[(\eta_y{}^bf_b{}^a+\eta_y{}^xf_x{}^a)B_a{}^h-\eta_y{}^af_a{}^xC_x{}^h-f_y{}^a(\partial_a\xi^h)\right.$$

$$-F_{jk}{}^h\xi^jf_y{}^aB_a{}^k+\xi_y(\phi u^h-v^h)-\xi^h(\phi u_y-v_y)\right]\varepsilon,$$

or, using (1.6), (1.7), (1.8), (2.7) and (2.8),

$$(2. 18) \qquad f_{i}^{h}(x+\xi\varepsilon)\overline{C}_{y}^{i}=f_{y}^{a}\overline{B}_{a}^{h} \\ +\left[\eta_{y}^{x}f_{x}^{a}-f_{b}^{a}(\nabla^{b}\xi_{y}+h_{ey}^{b}\xi^{e})-f_{y}^{b}(\nabla_{b}\xi^{a}-h_{bx}^{a}\xi^{x})\right. \\ +\left.\xi_{y}(\phi u^{a}-v^{a})-\xi^{a}(\phi u_{y}-v_{y})\right]B_{a}^{h}\varepsilon \\ +\left[f_{a}^{x}(\nabla^{a}\xi_{y}+h_{ey}^{a}\xi^{e})-f_{y}^{b}(\nabla_{b}\xi^{x}+h_{ba}^{x}\xi^{a})\right. \\ +\left.\xi_{y}(\phi u^{x}-v^{x})-\xi^{x}(\phi u_{y}-v_{y})\right]C_{x}^{h}\varepsilon.$$

Thus, we can see that (2.16) is equivalent to

(2. 19)
$$\xi_{y}(\phi u^{x} - v^{x}) - \xi^{x}(\phi u_{y} - v_{y})$$

$$= f_{y}^{a}(\nabla_{a}\xi^{x} + h_{ba}^{x}\xi^{b}) - f_{b}^{x}(\nabla^{b}\xi_{y} + h_{ay}^{b}\xi^{a}).$$

An infinitesimal variation given by (2.1) is called a *generic-preserving* variation if it carries a generic submanifold into a generic submanifold. Thus, we have

THEOREM 2.1. In order for an infinitesimal variation of a manifold with normal (f, g, u, v, λ) -structure to be a generic-preserving, it is necessary and sufficient that the variation (2.1) satisfies (2.19).

COROLLARY 2.2. In order for an infinitesimal variation of an even-dimensional sphere to be a generic-preserving, it is necessary and sufficient that the variation (2.1) satisfies

(2. 20)
$$\xi^{x} v_{y} - \xi_{y} v^{x} = f_{y}^{a} (\nabla_{a} \xi^{x} + h_{ba}^{x} \xi^{b}) - f_{b}^{x} (\nabla^{b} \xi_{y} + h_{ay}^{b} \xi^{a})$$

THEOREM 2.3. If an infinitesimal variation of the submanifold of the manifold M^{2m} with normal (f, g, u, v, λ) -structure is normal and u^h, v^h are tangent to the submanifold M^n . Then the variation is a generic-preserving.

COLOLLARY 2.4. If an infinitesimal variation of the submanifold of an even-dimensional sphere S^{2m} is parallel and v^h is tangent to the submanifold M^n . Then the variation is a generic-preserving.

§ 3. The variation of structure

Suppose that an infinitesimal variation $\bar{x}^h = x^h + \xi^h \varepsilon$ is a generic-preserving variation. Then putting

$$(3.1) f_i{}^h(x+\xi\varepsilon)\overline{B}_b{}^i = (f_b{}^a+\delta f_b{}^a)\overline{B}_a{}^h - (f_b{}^x+\delta f_b{}^x)\overline{C}_x{}^h,$$

we have from (1.6), (1.7), (2.6) and (2.7)

(3.2)
$$\delta f_b{}^a = \left[f_e{}^a (\nabla_b \xi^e - h_{bx}{}^e \xi^x) - f_b{}^e (\nabla_e \xi^a - h_{ex}{}^a \xi^x) \right. \\ \left. + f_b{}^a (\nabla_b \xi^x + h_{bc}{}^x \xi^c) - f_b{}^x (\nabla^a \xi_x + h_{ex}{}^a \xi^e) \right. \\ \left. + \xi_b (\phi u^a - v^a) + \xi^a (\phi u_b - v_b) \right] \varepsilon$$

and

(3.3)
$$\delta f_b{}^x = \left[f_b{}^y \eta_y{}^x - f_a{}^x (\nabla_b \xi^a - h_{by}{}^a \xi^y) - f_b{}^a (\nabla_a \xi^x + h_{ae}{}^x \xi^e) \right. \\ + \left. \xi_b (\phi u^x - v^x) - \xi^x (\phi u_b - v_b) \right] \varepsilon.$$

If a generic-preserving variation preserves f_{b}^{a} and b_{b}^{x} , then we say that it is f-preserving.

PROPOSITION 3. 1. A generic-preserving variation is f-preserving if and only if the brackets of (3. 2) and (3. 3) vanish.

Now applying the operator δ to (1.3) and using (2.6), (2.8) and δ $g_{ji}=0$, we find ([7])

(3.4)
$$\delta g_{cb} = (\nabla_c \xi_b + \nabla_b \xi_c - 2h_{cbx} \xi^x) \varepsilon,$$

from which,

(3.5)
$$\delta g^{ba} = -(\nabla^b \xi^a + \nabla^a \xi^b - 2h_x^{ba} \xi^x) \varepsilon.$$

Assume that an infinitesimal variation $\bar{x}^h = x^h + \xi^h \varepsilon$ is generic-preserving. Hence, we have

$$(3.6) f_i{}^h \overline{C}_y{}^i = f_y{}^a \overline{B}_a{}^h.$$

From (2.18), we obtain

(3.7)
$$\delta f_{y}{}^{i} = \left[f_{x}{}^{a} \eta_{y}{}^{x} - f_{b}{}^{a} (\nabla^{b} \hat{\xi}_{y} + h e_{y}{}^{b} \hat{\xi}^{e}) - f_{y}{}^{b} (\nabla_{b} \hat{\xi}^{a} - h_{bx}{}^{a} \hat{\xi}^{x}) \right. \\ + \left. \dot{\xi}_{y} (\phi u^{a} - v^{a}) - \dot{\xi}^{a} (\phi u_{y} - v_{y}) \right] \varepsilon.$$

PROPOSITION 3.2. Suppose that an infinitesimal variation is a generic-preserving. Then the variation of f_{ν}^{a} is given by (3.7).

Now we get a vector field \bar{u}^h which is defined intrinsically along the deformed submanifold. If we deplace \bar{u}^h back parallelly from the point (\bar{x}^h) to (x^h) , we obtain

$$\tilde{u}^h = \tilde{u}^h + \Gamma_{ii}^h (x + \xi \varepsilon) \xi^j \bar{u}^i$$
,

and hence forming

$$\delta u^h = \tilde{u}^h - \tilde{u}^h$$

we find

(3.8)
$$\delta u^h = \bar{u}^h - u^h + \Gamma_{ii}^h \xi^j u^i \varepsilon.$$

Further we have, from (1.8) and (3.8),

(3.9)
$$\delta(u^{a}B_{a}^{h} + u^{x}C_{x}^{h}) = \xi^{k}(\partial_{k}u^{h})\varepsilon + \Gamma_{ii}^{h}\xi^{j}u^{i}\varepsilon,$$

which and (2.6), (2.7) and (2.12) imply

(3. 10)
$$\delta u^{a} = -\left[u^{b} (\nabla_{b} \dot{\xi}^{a} - h_{bx}^{a} \dot{\xi}^{x}) - u^{y} (\nabla^{a} \dot{\xi}_{y} + h_{by}^{a} \dot{\xi}^{b}) + \lambda \dot{\xi}^{a} + \phi \dot{\xi}^{b} f_{b}^{a} + \phi \dot{\xi}^{x} f_{x}^{a}\right] \varepsilon$$

and

(3. 11)
$$\delta u^x = -\lceil u^b (\nabla_b \xi^x + h_{ba} \xi^a) + u^y \eta_v \xi^x + \lambda \xi^x + \phi \xi^b b_b \xi^a \rceil \varepsilon.$$

From which, using (3.4),

(3. 12)
$$\delta u_b = -\left[u^e(-\nabla_b \xi_e + h_{bex} \xi^x) - u^y(\nabla_b \xi_y + h_{eby} \xi^e) + \lambda \xi_b + \phi \xi^e f_{eb} + \phi \xi^x f_{xb}\right] \varepsilon.$$

and

(3.13)
$$\delta u_y = -\left[u^b (\nabla_b \xi_y + h_{bey} \xi^e) + u^x \eta_{xy} + \lambda \xi_y + \phi \xi^b f_{by}\right] \varepsilon.$$

Thus we have

PROPOSITION 3.3. Under an infinitesimal variation (2.1) of the submanifold, the variations of u^a , u^x , u_b and u_y are given by (3.10), (3.11), (3.12) and (3.13) respectively.

Similarly we get a vector field \bar{v}^h which is defined intrinsically from the point (\bar{x}^h) to (x^h) , we have

$$\tilde{v}^h = \bar{v}^h + \Gamma_{ii}^h (x + \xi \varepsilon) \xi^j \bar{v}^i \varepsilon$$

and hence forming

$$\delta v^h = \tilde{v}^h - v^h,$$

we find

(3. 15)
$$\delta v^{k} = \bar{v}^{k} - v^{k} + \Gamma_{ji}^{k} \xi^{j} v^{i} \varepsilon.$$

We have, from (1.8) and (3.15),

Infinitesimal variations of generic submanifolds of a manifold with normal (f, g, u, v, λ) -structure 17

(3. 16)
$$\delta(v^a B_a{}^h + v^x C_x{}^h) = \xi^k (\partial_k v^h) \varepsilon + \Gamma_{ii}{}^h v^i \varepsilon,$$

which and (1.2), (2.6) and (2.16) imply

(3. 17)
$$\delta v^{a} = -\left[v^{b} \left(\nabla_{b} \xi^{a} - h_{bx}^{a} \xi^{x}\right) - v^{y} \left(\nabla^{a} \xi_{y} + h_{by}^{a} \xi^{b}\right) + \phi \lambda \xi^{a} - \xi^{b} f_{b}^{a} - \xi^{y} f_{y}^{a} \right] \varepsilon$$

and

(3. 18)
$$\delta v^{x} = -\lceil v^{b} (\nabla_{b} \hat{\xi}^{x} + h_{ba}^{x} \hat{\xi}^{a}) + v^{y} \eta_{x}^{x} + \hat{\xi}^{b} f_{b}^{x} + \phi \lambda \hat{\xi}^{x} \rceil \varepsilon.$$

From which, using (3.4), we obtain

(3. 19)
$$\delta v_b = \left[v^e (\nabla_b \xi_e - h_{bex} \xi^x) - v^y (\nabla_b \xi_y + h_{eby} \xi^e) + \phi \lambda \xi_b - \xi^y f_{,b} \right] \varepsilon$$

and

(3. 20)
$$\delta v_{\nu} = -\left[v^{b} \left(\nabla_{b} \xi_{\nu} + h_{ba\nu} \hat{\xi}^{a}\right) + v^{x} \eta_{x\nu} + \xi^{b} f_{b\nu} + \phi \lambda \xi_{\nu}\right] \varepsilon.$$

Thus, we have

PROPOSITION 3. 4. Under an infinitesimal variation (2.1) of the submanifold, the variation of v^a , v^x , v_b and v_y are given by (3.17), (3.18), (3.19) and (3.20) respectively.

Finally, to obtain the variation of λ , applying the operator δ to $u^2u_a + u^xu_x = 1 - \lambda^2$ and using (3. 10), (3. 11), (3. 12) and (3. 13), we obtain

(3. 21)
$$\delta \lambda = [(u_a + \phi v_a) \xi^a + (u_x + \phi v_x)] \varepsilon.$$

Thus we have

PROPOSITION 3.5. Under an infinitesimal variation (2.1) of the submanifold, the variation of λ is given by (3.21).

§ 4. Infinitesimal generic variation preserving f_{b}^{a}

In this section we only consider that an infinitesimal generic variation (2.1) satisfying (2.20) of a submanifold M^n of an even-dimensional sphere S^{2m} . Moreover we suppose that this variation is normal and preserving f_b^a . Then we have from (3.2)

$$(4.1) (h_{cex}f_b^e + h_{bex}f_c^e)\xi^x + f_{cx}\nabla_b\xi^x - f_{bx}\nabla_c\xi^x = 0,$$

from which

$$(4.2) f_{cx} \nabla_b \xi^x - f_{bx} \nabla_c \xi^x = 0$$

and

$$(4.3) \qquad (h_{cer}f_h^e + h_{ber}f_c^e)\xi^x = 0.$$

If the vectors u^h and v^h are tangent to the submanifold, then we have from (1.10), (1.11) and (1.13)

$$(4.4) f_v f_h^a = 0,$$

$$(4.5) f_{y}^{a}f_{a}^{x} = \delta_{y}^{x},$$

and

$$(4.6) u^a f_a{}^x = 0, v^a f_a{}^x = 0,$$

respectively. Transvecting (4.2) with u^c and f_b^z , we have

$$(4.7) u^a V_a \xi^x = 0 \text{or} v^c V_c \xi^x = 0.$$

Transvecting (4.2) with $f_a{}^c$ and $f_z{}^b$, we have

$$(4.8) f_b{}^a f_a{}^c \nabla_c \xi^x = 0.$$

Substituting (1.9) and (4.7) into (4.8), we obtain $\nabla_c \xi^x = 0$. Hence we have

THEOREM 4.1. Suppose that an infinitesimal variation of the submanifold M^n of an even-dimensional sphere S^{2m} preserving $f_b{}^a$ and is normal. If the vectors u^h and v^h are tangent to M^n , then the variation is parallel.

We suppose that ξ^x are (2m-n) linearly independent normal vectors. Then we obtain from (4.3)

$$(4.9) h_{ce}{}^{x}f_{b}{}^{e} + h_{be}{}^{x}f_{c}{}^{e} = 0.$$

When the submanifold M^n is a hypersurface of S^{2m} , then $(1.9) \sim (1.15)$ become to so-called $(f, g, u_{(k)}, \alpha_{(k)})$ -structure ([4]). In this case the following theorem is well-known ([4]).

THEOREM B. Let M^{2m-1} be a hypersurface with the induced normal $(f, g, u_{(k)}, \alpha_{(k)})$ -structure of a sphere s^{2m} . If $\lambda^2 + (u_1^*)^2 + (v_1^*)^2 \neq 1$ (a. e.) and $\lambda \neq v$ (a. e.), then M^{2m-1} is product of two spheres, where $u_1^* = u^x = u_x$, $v_1^* = v^x = v_x$.

From Theorem B. and (4.9), we have

THEOREM 4.5. Let M^{2m-1} be a complete hypersurface of an even-dimensional sphere S^{2m} and an infinitesimal variation preserves $f_b{}^a$ and is normal. If

$$\lambda^2 + (u_1^*)^2 + (v_1^*)^2 - 1$$
 and λ

do not vanish almost everywhere, then we have $M^{2m-1}=S^r\times S^{2m-1-r}$, where S^r is r-dimensional sphere.

References

- 1. Blair, D.E., Ludden, G.D. and Yano, K., Induced structures on submanifolds, Kodai Math. Sem. Rep., 22(1970), 188-198.
- 2. Chen, B-Y. and Yano, K., On the theory of normal variations, to appear in J. of Diff. Geom.
- 3. Ki, U-H. and Park, J-S., Infinitesimal variations of invariant submanifolds with normal (f, g, u, v, λ) -structure, J. Korean Math. Soc., 14(1978), 241-261.
- Ki, U-H. and Suh, H. B., On hypersurfaces with normal (f, g, u, v, λ)-structure in an even-dimensional sphere, Kodai Math. Sem. Rep., 26 (1975), 427-439.
- 5. Lim, J. K. and Ki, U-H., Invariant submanifolds of a manifold with quasi-normal (f, g, u, v, λ) -structure, J. Korean Math. Soc., 9(1972), 49-57.
- 6. Pak, E. and Ki, U-H., On infinitesimal minimal variations of anti-invariant submanifolds of a Kaehlerian manifold, J. Korean Math. Soc. 14(1977), 71-80.
- Yano, K., Infinitesimal variations of submanifolds, to appear in Kodai Math. Sem. Rep.
- 8. Yano, K. and Ki, U-H., On quasi-normal (f, g, u, v, λ) -structure, Kodai Math. Sem. Rep., 24(1972), 106-120.
- Pak, E., On the infinitesimal variations under some conditions in the Riemannian manifold and its submanifolds. J. Korean Math. Soc., 15(1979), 117-128.

Seoul National University Hyosung Women's University