LIBERAL EXTENSION OF RINGS

By Lee Chong Yun

Kyung-Nam University, Masan, Korea.

1. Introduction

Let R, S be rings with identity such that $R \subseteq S$.

We call S a liberal extension of R if there is a finite set of elements $\{a_1, a_2, \dots, a_n\}$ of S such that $S = \sum a_i R$ and $a_i r = ra_i$ for each i and for all $r \in R$.

In this section we consider the relationship between the two rings R, T such that $R \subseteq T \subseteq M_n(R)$ where $M_n(R)$ is the $n \times n$ matrix ring over R.

S is a normalizing extension of R such that $S = \sum a_i R$ and $a_i R = Ra_i$ for $1 \le i \le n$. There exists ring T such that $R \subseteq T \subseteq S$ and $T \subseteq S = M_n(R)$ for $n \in Z$.

The result is frequently used in this paper.

2. Intermediate matrix rings

Before outlining the results it seems worthwhile to indicate some properties of liberal extensions which are commonly encountered.

- R[G] has krull dimension if and only if R has krull dimension. by I.G. Connel.
- S has krull dimension if and only if R has krull dimension by B. Lemonnier.
- S is right Noetherian if and only if R is right Noetherian by E. Formanek- A. Jategaonkar.
- If K-dim R(G) exists with $|G| < \infty$, then G satisfies A.C.C. on finite subgroup by S.M. Woods.

Definition 2.1

A left module M is faithful if its left annihilator (0: M) is 0.

A ring R is left primitive if there exists a simple faith left R- module.

Proposition 2.2

A prime ring with a faithful module of finite length is primitive.

Proof

Suppose M_R has a faithful with finite length. There must be $M=M_0\supset M_1\supset M_2\supset \cdots$ $\supset M_{n-1}\supset M_n=\{0\}$

Let $\{M_i\}$ be an n-series for M and set

$$A_1=(0:M/M_1), A_2=(0:M_1/M_2), \dots, A_{n-1}=(0:M_{n-1}/M_n).$$

Since M is faithful, $A_1 \neq 0$, $A_2 \neq 0$, ..., $A_{n-1} \neq 0$ and $MA_1A_2 \cdots A_{n-1} = 0$ imply that $A_1A_2 \cdots A_{n-1} = 0$ Moreover, this implies that $A_i = 0$ for $i \leq n-1$.

It easily follow from this fact that $A_i = (0 : M_i/M_{i+1}) = 0$. Hence M_i/M_{i+1} is a faithful irreducible R-module. We conclude that R is primitive.

Theorem 2.3

Let R, T be ring such that $R \subseteq T \subseteq M_n(R)$ where $M_n(R)$ is the matrix ring over R.

T has krull dimension if and only if R has krull dimension. In this case $K \dim T = K \dim R$.

Proof

Necessity. If a ft $\sigma: \mathcal{L}_r(R) \to \mathcal{L}_r(T)$ is defined by $\sigma(I) = IT$, then σ is injective. Suppose IT = JT.

We have that $I=IT\cap R=JT\cap R=J$, thus σ is injective. Suppose that K dim T exists. We get K dim $R\leqslant K$ dim T, K dim R exists.

Sufficiency. $K ext{ dim }_R R ext{ exists.}$ We easily get that $K ext{ dim }_R M_n(R) = K ext{ dim }_R R$, since $R \subseteq T \subseteq M_n(R) ext{ } K ext{ dim }_R T \leqslant K ext{ dim }_R M_n(R) = K ext{ dim }_R R$, $K ext{ dim }_R T ext{ exists.}$

Reference

- [1]. T. W. Hungerford, Algebra, Holt Rinehart and Winston, Inc, New York, 1974.
- (2). J. C. Robson and L. W. Small, Liberal extensions, school of mathematics, university of Leeds.
- [3]. S. M. Woods, Existence of krull dimension in group rings, London Math. Soc, 1973.
- (4). J. W. Fisher, C. Lanski and J. K. Park, Gabriel dimension of finite normalizing extensions, to appear.