Some Properties of Linear Functionals on Two-Norm Spaces

Y.S. Shin, U.H. Choi Aju Institute of Technology, Suwon, Korea

The purpose of this note is to show some basic properties of γ -linear functionals on two-norm spaces and Saks spaces, and apply the result to the theory of Banach Spaces.

We begin with some definitions given in [1], [2], and [3].

A Frechet norm $| \cdot |$ on a linear set X is a real valued nonnegative function with the following properties:

- (1) |x|=0 if and only if x=0.
- (2) $|x+y| \le |x| + |y|$ for all x, y in X,
- (3) if $\{a_n\}$ is a sequence of real numbers converging to a real number a and $\{x_n\}$ is a sequence of points of X with $|x_n-x| \longrightarrow 0$, then $|a_nx_n-ax| \longrightarrow 0$.

It is called a B-norm if the condition (3) is replaced by

(4) |ax| = |a||x| where a is any real number and x is any element of X.

Let $| \cdot |_1$ and $| \cdot |_2$ be two norms (B or F) defined on X. We define $| \cdot |_1 \ge | \cdot |_2$ if $|x_n|_1 \longrightarrow 0$ implies $|x_n|_2 \longrightarrow 0$.

When $| \cdot |_2 \ge | \cdot |_1$ and $| \cdot |_2 \ge | \cdot |_1$, we say that $| \cdot |_1$ is equivalent to $| \cdot |_2$ and write $| \cdot |_1 \sim | \cdot |_2$.

A two norm space is a linear set X with two norms, a B-norm $|\cdot|_1$ and an F-norm $|\cdot|_2$. A sequence x_n of points in a two norm space $(X, \cdot |\cdot|_1, \cdot |\cdot|_2)$ is said to be γ -convergent to x in X, written $x_n \longrightarrow x$, if

 $\lim \sup_{n} |x_n|_1 < \infty$ and $\lim_{n} |x_n - x|_2 = 0$.

A sequence $\{x_n\}$ in a two norm space is said to be γ -Cauchy if $(x_{p_n}-x_{q_n})\to 0$ as $p_n, q_n\to\infty$.

A two norm space $X_s = (X_s + | x_s + | x_s$

A γ -linear functional f on two norm space is a real valued function on X, such that

- (1) f(ax+by)=af(x)+bf(y), for every real numbers a, b and any x, y in X,
- (2) if $x_n \longrightarrow x$, then $f(x_n) \longrightarrow f(x)$.

The set of all γ -linear functionals on X_s will be denoted by X_s^* . It is easy to see that X_s^* is a linear set.

Let X be a linear set and suppose that $|\cdot|_1$ is a B-norm, and $|\cdot|^*$ is an F-norm on X.

Let $X_s = \{x \in X: |x|_1 \le 1\}$ and define $d(x, y) = |x - y|^*$ for x, y in X_s .

If we work in the setting of Saks sets, we can use category arguments. A disadvantage is that a Saks set is not a linear set while a two norm space is a linear set.

W. Orlicz [4] has shown the following

- (1) $| \cdot |_1$ is equivalent to $| \cdot |_2$ on X,
- (2) $| \cdot |_2 \ge | \cdot |_1$ on X and $(X, \cdot | \cdot |_1)$ is a Banach space,
- (3) $| \cdot |_1 \ge | \cdot |_2$ on X and $(X, \cdot | \cdot |_2)$ is a Frechet Space.

Using this lemma we can show the following

- (1) $| \cdot |_1$ is equivalent to $| \cdot |_2$ on X,
- (2) $| |_2 \ge | |_1$ on X and $| |_1 \ge | |_2$ on a linear set A with $A \cap X$, dense in X, with respect to $| |_1$.

Proof. By the lemma it is sufficient to show that $(X, | \cdot | \cdot |)$ is a Banach space. Let $\{x_n\}$ be an arbitrary Cauchy sequence in $(X, | \cdot | \cdot |)$. Then by the definition of Saks space there exists a non-zero constant c such that $|x_n|_1 \le c$. Let $y_n = x_n/c$. Then clearly y_n belongs to X_n , for every n.

Since $A \cap X_s$ is dense in X_s , for each n, there exists a sequence in $A \cap X_s$ $\{z_{k,n}\}$ such that for each k, $|y_n - z_{k,n}|_1 < 1/n$ and

$$\lim_{k} |y_n - z_{k,n}|_1 = 0.$$

Now we show that the sequence $\{z_{n,n}\}$ is a Cauchy in $(X, | \cdot|_1)$. By appling the triangle inequality, we have

$$|z_{n,n}-z_{m,m}|_1 \leq |z_{n,n}-y_n|_1 + |y_n-y_m|_1 + |y_m-z_{m,m}|_1.$$

As n and m tend to infinity each of the terms on the right approaches zero. Hence $\{z_{n,n}\}$ is a Cauchy sequence in $(X, |\cdot|_1)$.

We may assume that $|z_{n,n}-z_{m,m}|_1 < r < 1$. Since $z_{n,n}-z_{m,m}$ belongs to $A \cap X_s$, the condition $|\cdot|_1 \ge |\cdot|_2$ on A implies that $|z_{n,n}-z_{m,m}|_2$ approaches zero as n,m tend to infinity. Thus $\{z_{n,n}\}$ is a Cauchy sequence in (X_s,d) . The space (X_s,d) being complete, $\{z_{n,n}\}$ converges to an element x in X_s . On the other hand, the condition $|\cdot|_2 \ge |\cdot|_1$ on X implies that $\{z_{n,n}\}$ tends to x in $|\cdot|_1$ as n tends to infinity. Then, the inequality

$$|y_n-x|_1 \le |y_n-z_{n,n}|_1 + |z_{n,n}-x|_1$$

shows that y_n approaches x in $| \cdot |_1$ as n tends to infinity and $(X_n \cdot | \cdot |_1)$ is complete.

W. Orlicz and V. Ptak ([5], p.63) have defined a set Y_0 in $(X, | |_X)^*$ to have property (T) if for each non-zero x in X, there is a y in Y_0 shuch that $y(x) \neq 0$.

Let V_0 be a subspace of $(X, | |_X)^*$. A subset V of V_0 is called an 0-basis for V_0 if

- (1) norm of each functionals in V is at most one, and
- (2) V_0 is the closure with respect to $|\cdot|_X^*$ of the linear envelope of V.

If Y_0 in $(X, | |_X^*)$ has property (T), and V is an 0-basis for Y_0 , a B-norm can be defined on X by

$$|x|_0^* = \sup_{x \in V} |y(x)|.$$

If Y_0 is separable and $\{f_n\}$ is dense in the unit ball, $n^{-1} f_n$ is a compact 0-basis for Y_0 . If V is a compact 0-basis for Y_0 , we define $(X_{n,n},d)=(X_n, | |_X, | |_0^*)$.

If $(X, | |_X)^*$ is separable, X^* has a compact 0-basis V. The space of γ -linear functionals on $(X_{s,n}, d)$ will be denoted by $X_{s,n}^*$.

Now we are ready to state the following

Lemma. $X^*=X_{s,n}$.

Proof. The inclusion $X_{s,n}^* \subset X^*$ is clear from the fact that $| \ |_0^* \le | \ |_X$. Let y belong to V. Then f belongs to $X_{s,n}^*$ by the definition of $| \ |_0^*$. The space $(X_{s,n}^*, \ | \ |_X^*)$ is a Banach space ([5], p. 57). Thus $X_{s,n}^*$ contains the closure with respect to $| \ |_X^*$ of the linear envelope of V, which is X^* . Hence $X^* = X_{s,n}^*$.

Theorem. In $(X_{s,n}, d)$, γ -weak convergence is equivalent to $|\cdot|_0^*$ convergence.

Proof. Let x_n converge to x weakly in $(X_{s,n}, d)$. By the lemma $X_{s,r}^* = X^*$. Therefore, $L_{x_n}(f) = f(x_n)$ approaches $f(x) = L_x(f)$ for each f in $X_{s,n}^* = X^*$.

Since V is compact, by Gelfand's Theorem ([6], p. 299), L_x tends to L_x uniformly on V_0 . Hence, for any given $\varepsilon > 0$, there is a natural number N such that

$$|L_{x_n}(f)-L(f)|=|f(x_n)-f(x)|<\varepsilon$$

for n > N, for all f in V, Thus

$$|x_n-x|_0^*=\sup_{f\in V}|L_{x_n}(f)-L_x(f)|<\varepsilon.$$

Hence $|x_n-x|_0^*$ approaches zero as n tends to infinity. This completes the proof of the theorem.

References.

- 1. A. Alexiewicz and Z. Semandi, the two-norm spaces and their conjugate spaces, Studia Math. 18(1959), 275-293.
- 2. A. Alexiewicz and Z. Semandi, Linear functionals on two-norm spaces, *Studia Math.* 17(1958), 121-140.
- 3. A. Alexiewicz, The two norm spaces, Studia Math. Special Volumes, 17-20 (1963).
- 4. W. Orlicz, Linear Operators in Saks Space (2), Studia Math. 15, 1-25 (1955).
- 5. W. Orlicz and V. Ptak, Some remarks on Saks spaces, Studia Math. 16, 56-68(1957).
- 6. L. V. Kantorovich and G. P. Akilov, Functional analysis in normed spaces, New York, (1964).