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Some Properties of Linear Functionals on Two-Norm Spaces

Y.S. Shin, U.H. Choi
Aju Institute of Technology, Suwon, Korea

The purpose of this note is to show some basic properties of y-linear functionals on
two-morm spaces and Saks spaces, and apply the result to the theory of Banach Spaces.

We begin with some definitions given in [1], [2], and [3].

A Frechet norm | | on a linear set X 1is a real valued nonnegative function with the
following properties:

(1) |xl=0 if and only if x=0,

@) lz+yi<|x|+]1y| for all x,y in X,

(3) if {a,} is a sequence of real numbers converging to a real number a and {x,} is a

sequence of points of X with |x,—x|—0, then |a,x,—ax|—0.
It is called a B-norm if the condition (3) is replaced by

(4) lax|=la|l x| where a is any real number and x is any element of X. ;

Let | |; and | |, be two norms (B or F) defined on X. We define | [\2] |, if |%.:
—-0 implies |x,],—>0.

When | |,=] |, and | [,=] |;, we say that | |, is equivalent to | |, and write | |.,~
[ e

A two norm space is a linear set X with two norms, a B-norm | |, and an F-norm
| {.. A sequence x, of points in a two norm space (X, | | | [2) is said to be y-conve
rgent to x in X, written x,——x, if

lim sup, |x,]:<c0 and lim, |x,—x|,=0.

A sequence {x,} inatwo norm space is said to be y~Cauchy if (x5.—x,)—0 as p., g.—>.

A two norm space X,=(X, | |, | [.) is called y-complete if for every r-Cauchy
sequence {x,} in X, there exists an x in X, such that x,—x.

A y-linear functional f on two norm space is a real valued function on X, such that

(1) flax+by) =af(x)+bf(»), for every real numbers q, b and any x,y in X,,

(2) if x,—x, then f(x,)— /().

The set of all y-linear functionals on X; will be denoted by X:. It is easy to see that
X: is a linear set.

Let X be a linear set and suppose that | |; is a B-norm, and | |* is an F-norm on X.



Let X,={xeX: |x|,<1} and define d(x,)=|x~y[* for x,y in X,

Then d is a metric on X, and the metric space (X,,d) will be called a Saks set. If
(X, d) is complete, it will be called a Saks space. We shall denote X,d) by (X, | [,
| 1*). A linear functional Ly on (X.*, | |;*) is defined by L,(F)=f(x) for each fin X:.

If we work in the setting of Saks sets, we can use category arguments. A disadvan-
tage is that a Saks set is not a linear set while a two norm space is a linear set.

W. Orlicz (4] has shown the following

Lemma. Let (X,d)=(X, | |n | |2) be a Saks space. Then the Sfollowing are equivalent:

(D | |, is equivalent to | |, on X,

@) | 2] lhon X and (X, | 1)) is a Banach space,

@G izl leon X and (X, | |2) is a Frechet Space.

Using this lemma we can show the following

Theorem. Let (X,,d)=(X, | |, | |2) be a Saks space. Then the Sollowing are equivalent:

(L | 1. is equivalent to | |, on X,

@ [ 1zl lhon X and | |12 |2 on a linear set A with AnX, dense in X, with respect

to | ).

Proof. By the lemma it is sufficient to show that (X, | |,) is a Banach space. Let
{x.} be an arbitrary Cauchy sequence in (X, | |;). Then by the definition of Saks space
there exists a non-zero constant ¢ such that |x,[,<c. Let y,=x,/c. Then clearly y, belongs
to X, for every n.

Since AN X, is dense in X,, for each n, there exists a sequence in ANX, {2..} such
that for each &, |y,—2z..1<1/# and

lim 4lys—2u.l:=0.

Now we show that the sequence {z,,,} is a Cauchy in (X, | [,). By appling the triangle
inequality, we have .
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As #n and m tend to infinity each of the terms on the right approaches zero. Hence
{z...} is a Cauchy sequence in (X, | |.).

We may assume that |z,,,—~2m.n.11<7<1. Since z,.,—z,, belongs to ANX, the condition
| }i=] . on A implies that |z,,—2z,..|. approaches zero as #,m tend to infinity. Thus
{z...} is a Cauchy sequence in (X,,d). The space (X, d) being complete, {z,.,} converges
to an element x in X,. On the other hand, the condition | [.=] |, on X implies that
{z,..} tends to x in | |, as # tends to infinity. Then, the inequality

P21 <0200 l1F 1200~ s
shows that y, approaches x in | |, as # tends to infinity and (X, | ;) is complete.

W. Orlicz and V. Ptak ([5], p.63) have defined a set Y, in (X, | {x)* to have
property (T) if for each non-zero x in X, there is a y in Y, shuch that y(x)=0.

Let V, be a subspace of (X, | [x)*. A subset V of V, is called an 0-basis for V, if

(1) norm of each functionals in V is at most one, and

(2) Vi is the closure with respect to | |; of the linear envelope of V.



If Yyin (X, ||%) has property (T), and V is an (-basis for Y, a B-norm can be
defined on X by

lx|§=suply()|.
yeV

If Y, is separable and {f,} is dense in the unit ball, »™* f, is a compact Q-basis for
Ys. If Vis a compact (-basis for Y,, we define (X,.d)=CX, | lx | |3

If (X, | |x* is separable, X* has a compact Q-basis V. The space of py-linear
functionals on (X, d) will be denoted by X,.

Now we are ready to state the following

Lemma. X*=X/,.

Proof. The inclusion X;,cX* is clear from the fact that | |;<| |x. Let y belong to
V. Then f belongs to X!, by the definition of | |;. The space (X, | |x*) is a Banach
space ([5], p.57). Thus X:. contains the closure with respect to | |% of the linear
envelope of V, which is X*. Hence X*=X;,.

Theorem. In (X,...d), r-weak convergence is eguivalent to | |} convergence.

Proof. Let x, converge to x weakly in (X, d). By the lemma X:.=X*. Therefore,
L..(f)=f(x,) approaches f(x)=L.(f) for each f in X:,=X*.

Since V is compact, by Gelfand’s Theorem ([6], p. 299), L., tends to L, uniformly
on V.. Hence, for any given >0, there is a natural number N such that

[ L ()—=LO | =1f(x)~f(x) ] <e
for n>N, for all fin V, Thus
Ixn—xl3=§ggle.(f)—L,(f)I<e-

Hence |x,—x|; approaches zero as # tends to infinity. This completes the proof of the
theorem. ’
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