A note on Continuous Seminorms on Locally Convex Spaces.

Huh, Kul. Yonsei University, Seoul, Korea

1. Introduction

In this note, we shall study some properties of a basis of continuous seminorms on the locally convex space E. Finally, we shall prove the following facts: If \mathcal{P} is a basis of continuous seminorms on E, then the family of seminorms on E/M $\dot{\mathcal{P}}$ induced by \mathcal{P} is a basis of continuous seminorms of E/M.

2. Preliminaries

In this section, we collect some definitions and known results which we will need in this note.

- **Definition 2.1** A subset K of a vector space E is *convex* if, whenever K contains two points x and y, K also contains the segment of straight line joining them: If $x, y \in K$ and if α, β are two numbers ≥ 0 such that $\alpha + \beta = 1$, then $\alpha x + \beta y \in K$
- **Definition 2.2** A subset K of a vector space E is said to be absorbing if to every $x \in E$, there is a number $C_x > 0$ such that for all $\lambda \in C$ $|\lambda| \le C_x$, we have $\lambda x \in K$.
- **Definition 2.3** A subset K of a vector space E is said to be *balanced* if for every $x \in K$ and every $\lambda \in C$, $|\lambda| \le 1$, we have $\lambda x \in K$

Definition 2.4 A subset T of a topological vector space (TVS) E is called a *barrel* if T has the following four properties:

- (1) T is absorbing;
- (2) T is balanced;
- (3) T is closed;
- (4) T is convex.

Definition 2.5 A TVS E is said to be a *locally convex space* if there is a basis of neighborhoods in E consisting of convex sets.

Lemma 2.1 In a locally convex space E, there is a basis neighborhoods of O consisting of barrels.

Definition 2.6 A nonnegative function $p:x|\longrightarrow p(x)$ on a vector space E is called a *seminorm* if p satisfies the following conditions;

(1) p is subadditive, i. e., for all $x, y \in E$, $p(x+y) \le p(x) + p(y)$

(2) p is positively homogeneous of degree 1, i.e., for all $x \in E$ and all $\lambda \in C$, $p(\lambda x) = |\lambda| p(x)$.

Definition 2.7 Let E be a vector space and p a seminorm on E. Then the sets

$$U_p = \{x \in E | p(x) \le 1\}, \quad \mathring{U}_p = \{x \in E | p(x) \le 1\}$$

will be called, respectively, the closed and the open unit semiball of p.

Lemma 2.2 Let E be a TVS and p a seminorm on E. Then the following statements are equivalent;

- (1) The open unit semiball of p is an open set;
- (2) p is continuous at the origin;
- (3) p is continuous at every point.

Lemma 2.3 If p is a continuous seminorm on TVS E, then its closed unit semiball is a barrel.

Lemma 2.4 Let E be a TVS and T a barrel in E. Then there exists a unique seminorm p on E such that T is the closed unit semiball of p. The seminorm p is continuous if and only if T is a neighborhood of 0.

Corollary. Let E be a locally convex space. The closed unit semiballs of the continuous seminorms on E form a basis of neighborhoods of 0.

Definition 2.8 A family of continuous seminorms \mathcal{P} on a locally convex space E is said to be a *basis of continuous seminorms on* E if to any continuous seminorm p on E there is a seminorm q beloning to \mathcal{P} and constant c>0 such that, for all $x \in E$,

(A)
$$p(x) \le cq(x)$$

(Remark) Let us denote by U_{ρ} (resp. U_{q}) the closed unit semiball of p (resp. q). Then (A) means c^{-1} $U_{q} \subset U_{\rho}$

3. Some properties

Proposition 3.1 Let \mathcal{P} be a basis of continuous seminorms on the locally convex space E. Then the sets λU_p , where U_p is the closed unit semiball of p and p varies over \mathcal{P} and λ on the set of numbers>0, form a basis of neighborhoods of 0. Conversely, given any family of neighborhoods of 0, \mathcal{B} , consisting of barrels and such that the set λU_p , when $U \in \mathcal{B}$ and $\lambda > 0$, form a basis of neighborhoods of 0 in E, then the seminorms whose closed unit semiballs are the barrels belonging to \mathcal{B} form a basis of continuous seminorms in E.

Proof (\Rightarrow) By Lemma 2.1., let v be a barrel which is a neighborhood of 0. Then, by Lemma 2.4., there exists a unique continuous seminorm p on E such that $v=U_p$. From Definition 2.9., there is $q \in \mathcal{P}$ and a constant c>0 such that for all $x \in E$, $p(x) \le cq(x)$

From(Remark),

$$\frac{1}{c}U_q \subset U_p = v$$
, i.e., $\lambda U_q \subset v$, where $\lambda = \frac{1}{c}$

Thus $\{\lambda U_q | q \in \mathcal{Q}, \lambda > 0\}$ is a basis of neighborhoods of 0.

(\Leftarrow) Let $\mathcal{L} = \{q \mid q \text{ is a continuous seminorm on } E \text{ whose closed unit semiball } U_q \in \mathcal{L} \}$ and let p be any continuous seminorm on E, Then U_p is a neighborhood of 0. By

assumption, there is $U \in \mathcal{B}$ and $\lambda > 0$ such that $\lambda U \subset U_p$ or $U \subset \frac{1}{\lambda} U_p$ and we have $q \in \mathcal{P}$ such that $U_q = U$. Thus $\lambda U_q \subset U_p$, i.e., $p(x) \leq \frac{1}{\lambda} q(x)$, for all $x \in E$.

Hence \mathcal{P} is a basis of continuous seminorms on E.

Proposition 3.2. Let E, F be two locally convex spaces. A linear map $f: E \longrightarrow F$ is continuous if and only if to every continuous seminorm q on F, there is a continuous seminorm p on E such that, for all $X \in E$, $q(f(x)) \le p(x)$.

Proof (\Rightarrow) Suppose that f is continuous linear map. Then, since q is a continuous seminorm on F, $q \circ f$ is a continuous seminorm on E. Let $p=q \circ f$. Then, for every $x \in E$, q(f(x))=p(x) or $q(f(x)) \leq p(x)$.

 (\Leftarrow) Suppose that for any continuous seminorm q on F, there is a continuous seminorm p on E such that, for each $X \in E$, $q(f(x)) \le p(x)$. Now let U be a basic neighborhood barrel. Then there is a continuous seminorm q such that $U = U_q$.

On the other hand, since there is a continuous seminorm p on E such that, for all $x \in E$, $q(f(x)) \le p(x)$ and $q \circ f$ is a continuous seminorm on E,

$$U_{\rho} \subset U_{q \circ f} = f^{-1}(q^{-1}([0,1])) = f^{-1}(U_{q}) \text{ i.e., } U_{\rho} \subset f^{-1}(U_{q}).$$

Thus $f^{-1}(U_q)$ is a neighborhood of 0 in E.

Proposition 3.3 Let E be a locally convex space. Let \mathcal{P} be a basis of continuous seminorms on E. A filter \mathcal{F} on E converges to a point x if and only if to every $\varepsilon > 0$ and to every seminorm $p \in \mathcal{P}$ there is a subset M of E belonging to \mathcal{F} such that, for all $y \in M$, $p(x-y) < \varepsilon$

Proof (\Rightarrow) Let $p \in \mathcal{P}$. Then for every $\varepsilon > 0$, $\frac{1}{\varepsilon}p$ is a continuous seminorm on E. Let $V = x + \mathring{U}_{\frac{p}{\varepsilon}}$. Since $F \longrightarrow x$, $\exists M \in \mathcal{F}$ such that $M \subset V = x + \mathring{U}_{\frac{p}{\varepsilon}}$. Hence for every $y \in M$, we have $y \in x + \mathring{U}_{\frac{p}{\varepsilon}}$. Then $X - Y \in \mathring{U}_{\frac{p}{\varepsilon}}$, i.e., $\frac{1}{\varepsilon}p(x-y) < 1$. Thus $p(x-y) < \varepsilon$.

(\Leftarrow) Let x+U be a neighborhood of x. (where U is a barrel.) Then there is a continuous seminorm p on E such that $U_p=U$.

Since \mathcal{P} is a basis of continuous seminorms on E, there is $q \in \mathcal{P}$ and a constant c > 0 such that $\frac{1}{c}p(x) \le q(x)$, i.e., $\frac{1}{c}U_q \subset U_p = U$. Let $\varepsilon = \frac{1}{c}$.

Then there is $M \in \mathcal{F}$ such that, for all $y \in M$, $q(y-x) < \varepsilon$.

Thus
$$y-x \in \frac{1}{c} U_q \subset U$$
, i.e., $y \in x+U$ or $M \subset x+U$.

Hence $x+U \in \mathcal{F}$ or $\mathcal{F} \longrightarrow x$.

Proposition 3.4 Let E be a locally convex space, and M a linear subspace of E. Let ϕ be the canonical mapping of E onto E/M. If $\mathcal P$ is a basis of continuous seminorms on E, let us denote by $\mathring{\mathcal P}$ the family of seminorms on E/M consisting of the seminorms

$$E/M \ni \dot{x} \longrightarrow \dot{p}(x) = \inf p(x). \quad \phi(x) = \dot{x}.$$

Then \mathcal{P} is a basis of continuous seminorms of E/M.

Proof (i) For all \dot{x} , $\dot{y} \in E/M$,

$$\dot{p}(\dot{x}+\dot{y})=\dot{p}(x+y+M)$$

$$=\inf p(x+m+y+m') \qquad (m, m' \in M)$$

$$\leq \inf_{\substack{m, m' \in M \\ \neq b}} (p(x+m)+p(y+m'))$$

$$\leq \dot{p}(x)+\dot{p}(y).$$

Thus p is subadditive.

Now, for all $\dot{x} \in E/M$ and all $\lambda \in C$,

$$\dot{p}(\lambda \dot{x}) = \dot{p}(\lambda(x+M))$$

$$= \inf_{m \in M} p(\lambda(x+m))$$

$$= \inf_{m \in M} |\lambda| p(x+m) = |\lambda| \inf_{m \in M} p(x+m) = |\lambda| \dot{p}(\dot{x}).$$

Thus p is positively homogeneous of degree 1.

Hence p is a seminorm on E/M.

(ii) Let r be a continuous seminorm on E/M. To show that $\dot{\mathcal{F}}$ is a basis of continuous seminorms on E/M, we need to show that there exist $\dot{q} \in \dot{\mathcal{F}}$ and a constant c > 0 such that for every $x+M \in E/M$,

$$r(x+M) \le c\dot{q}(x+M)$$

Now let x+M be a fixed element in E/M. We define a function $p: E \longrightarrow M$ by p(x) = r(x+M).

Then we have, for $y, z \in E$,

$$p(y+z) = r(y+z+M)$$

$$\leq r(y+M) + r(Z+M)$$

$$= p(y) + p(z)$$

$$p(\alpha y) = r(\alpha y + M)$$

$$= |\alpha| r(y+M)$$

$$= |\alpha| p(y)$$

Thus p is a seminorm on E. Further more, since $p=r\cdot\phi$ is continuous on E, it follows that p is a continuous seminorm on E. Since \mathcal{P} is a basis of continuous seminorms on E, there exist a $q\in\mathcal{P}$ and a constant c>0 such that for each $x\in E$, we have

$$p(x) \le cq(x)$$
.

Now we observe that for every $y \in x + M$,

$$p(x) = p(y) \le cq(y)$$
.

Hence $p(x) = \inf_{y \in x+M} p(y) \le \inf_{y \in x+M} cq(y) = cq(x)$.

This completes the proof.

Reference

- Francois Treves: Topological vector spaces, Distributions and kernels, Academic press. New York 1967.
- 2. Robertson, A. P., and Robertson W. J.; *Topological vector spaces*. Cambridge University press, New York 1964.