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A note on Continuous Seminorms on Locally Convex Spaces.
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1. Introduction

In this note, we shall study some properties of a basis of continuous seminorms on the
locally convex space E. Finally, we shall prove the following facts: If 2 is a basis of
continuous seminorms on E, then the family of seminorms on E/M & induced by @ is
a basis of continuous seminorms of E/M.

2. Preliminaries

In this section, we collect some definitions and known results which we will need in
this note.

Definition 2.1 A subset K of a vector space E is convex if, whenever K contains two
points ¥ and ¥, K also contains the segment of straight line joining them: If x,yeK
and if a, 8 are two numbers>0 such that a+8=1, then ax+gyeK

Definition 2.2 A subset K of a vector space E is said to be absbrbing if to every x€E,
there is a number C,>0 such that for all AeC |2]|<C,, we have AxeK.

Definition 2.3 A subset K of a vector space E is said to be balanced if for every xe€K
and every A€C, |A]<1, we have lxeK

Definition 2.4 A subset 7 of a topological vector space (TVS) E is called a barrel if
T has the following four properties:

(1) T is absorbing;

(2) T is balanced;

(3) T is closed;

(4) T is convex.

Definition 2.5 A TVS E is said to be a locally convex space if there is a basis of neigh-
borhoods in E consisting of convex sets.

Lemma 2.1 In a locally convex space E, there is a basis neighborhoods of O consisting of
barrels.

Definition 2.6 A nonnegative function p : #——p(x) on a vector space E is called a
seminorm if p satisfies the following conditions;

(1) p is subadditive, i.e., for all x,yeE, plx+y)<px)+p(»)



(2) p is positively homogeneous of degree 1, i.e., for all s€E and all AeC, p(Ax)=
|21 p().
Definition 2.7 Let E be a vector space and p a seminorm on E. Then the sets
Ur={xe Elp(®)<1), Up={zeElpx)<1)
will be called, respectively, the closed and the open unit semiball of p.

Lemma 2.2 Let E be a TVS and p a seminorm on E. Then the following statements
are equivalent;

(1) The open unit semiball of p is an open set;

(2) p is continuous at the origin;

(8) p is continuous at every point.

Lemma 2.3 If p is a continuous seminoyrm on TVS E, then ils closed unit semiball is
a barrel.

Lemma 2.4 Let E be a TVS and T a barrel in E. Then there exists a unique seminorm
D on E such that T is the closed unit semiball of p. The seminorm p is continuous if and
only if T is a neighborhood of 0.

Corollary. Let E be a locally convex space. The closed unit semiballs of the continuous
seminorms on E form a basis of neighborhoods of 0.

Definition 2.8 A family of continuous seminorms @ on a locally convex space E is
said to be a basis of continuous seminorms on E if to any continuous seminorm p on E
there is a seminorm ¢ beloning to & and constant ¢>0Q such that, for all x€E,

(4) px)<cqlx)
(Remark) Let us denote by U, (resp. U,) the closed unit semiball of p (resp. ¢). Then
(A) means ¢! U,cU,

3. Some properties

Proposition 3.1 Let P be a basis of continuous seminorms on the locally convex space E.
Then the sets AU,, where U, is the closed unit semiball of p and p varies over P and
A on the set of numbers>0, form a basis of neighborhoods of 0. Conversely, given any
Sfamily of neighborhoods of 0, B, consisting of barrels and such that the set AU, when
UeB and A1>0, form a basis of neighborhoods of 0 in E, then the seminorwms whose closed
unit semiballs are the barrels belonging to B form a basts of continuous seminorms in E.

Proof (=) By Lemma 2.1., let v be a barrel which is a neighborhood of 0. Then,
by Lemma 2.4., there exists a unique continuous seminorm p on E such that v=U,.
From Definition 2.9., there is g= % and a constant ¢>Q such that for all x€E, p(x)<
cq(x)

From(Remark),

A
c

Thus {AU,|qe P, 2>0} is a basis of neighborhoods of 0.
(&) Let P={q|q is a continuous seminorm on E whose closed unit semiball U, 3}
and let p be any continuous seminorm on E, Then U, is a neighborhood of 0. By

—i—U,,CUpzv, i.e., AU, cv, where A=

_42_



assumption, there is U€ B and A>0 such that AUcU, or UC—%—U, and we have ¢e@

such that U,=U. Thus AU,cU,, ie., p(x)é—%—q(x), for all xE.

Hence @ is a basis of continuous seminorms on E.

Proposition 3.2. Let E, F be two locally convex spaces. A linear map f: E—F is
continuous if and only if lo every conlinuous seminorm q on F, there is a continuous
seminorm p on E such that, for all X€E, q(f(x))<p(x).

Proof (=) Suppose that f is continuous linear map. Then, since ¢ is a continuous
seminorm on F, geof is a continuous seminorm on E. Let p=gof. Then, for every x€
E, g(f(x))=p(x) or g(f(x))<p(x).

(&) Suppose that for any continuous seminorm ¢ on F, there is a continuous seminorm
p on E such that, for each XeE, ¢(f(x))<p(x). Now let U be a basic neighborhood
barrel. Then there is a continuous seminorm ¢ such that U=U,.

On the other hand, since there is a continuous seminorm p on E such that, for all ze
E, q(f(x))<p(x) and gof is a continuous seminorm on E,

UsCUger=/"Y (g7 ([0, 11D ="', i.e., U,cf'(U.
Thus /7Y (U,) is a neighborhood of 0 in E.

Proposition 8.3 Let E be a locally convex space. Let P be a basis of continuous
seminorms on E. A filter F on E converges to a point x if and only if to every ¢>0 and to
every seminorm pEP there is a subset M of E belonging to F such that, for all yeM,
px—y)<e .

Proof (=) Let pe®. Then for every &>0, —i—p is a continuous seminorm on E. Let
V=x+ l‘}_,;. Since F—z, IM e such that McV=x+ IOJL. Hence for every yeM, we

have yex-i—lojl. Then X——Yel?_,—, e, —Z:—p(x—y)<l. Thus p(x—y)<e.

(&) Let x+U be a neighborhood of x. (where U is a barrel.) Then there is a contin-
uous seminorm p on E such that U,=U.
Since @ is a basis of continuous seminorms on FE, there is g% and a constant ¢>0

such that ——p()<q(x), i.e., L-U,cU,=U. Let e=—1-.

Then there is M e such that, for all yeM, g(y—2x)<e.
Thus y—xe—}UqcU, ie., yex+U or Mcx+U.
Hence x+Ue% or F—x.

Proposition 8.4 Let E be a locally convex space, and M a linear subspace of E. Let ¢
be the canonical mapping of E onto E/M. If P is a basis of continuous seminorms on E,
let us denote by _CP the family of seminorms on E/M consisting of the seminorms

E/Msa‘:-——vj.i(x)=z'nf p(x). g(x)=4%.
Then P is a basis of continious seminorms of E/M.
Proof (i) For all %, yeE/M,
PG+ =p(x+y+M)



=inf p(x+m+y+m’) (m,m’eM)
sz:ﬁfe(g(x+m)+p(y+m’))
<P +0).
Thus p is subadditive.
Now, for all 1€ E/M and all A€C,
DU =pA(x+MD)
=inf pQACx-+m)

=inf|A1pCa+m)=|Alinf p(atm)=|215(.

Thus p is positively homogeneous of degree 1.
Hence p is a seminorm on E/M.

(ii) Let 7 be a continuous seminorm on E/M. To show that & is a basis of continuous
séminorms on E/M, we need to show that there exist §&@ and a constant ¢>0 such that
for every x+MeE/M,

r(x+M)<cg(x+M)
Now let x+M be a fixed element in E/M. We define a function p : E—M by
) =r(x+M).
Then we have, for y,ze€E,
py+2)=r(y+2+M)
Lr(y+M)+r(Z+M)
=p(»)+pC2)
play) =r(ay+M)
=|a|r(y+M)
=la|p(»)
Thus p is a seminorm on E. Further more, since p=r-¢ is continuous on £, it follows
that p is a continuous seminorm on E. Since @ is a basis of continuous seminorms on E,
there exist a g and a constant ¢>0 such that for each x€E, we have
P <cq(x).
Now we observe that for every yex+M,
@ =p(y)<cq(y).
Hence p(x)=inf p(y)<inf cq(y)=cq(x).
yex+M yex+M

This completes the proof.
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