Calculation of the Magnetic Moments for Transition Metal Complexes (I). The Magnetic Moments for Distorted Octahedral $[Ti(III)A_3B_3]$ Type Complexes [A and B = Cl, O, N, Br]

전이원소착물의 자기모멘트의 계산 (제1보). 일그러진 팔면체 $[Ti(III)A_3B_3]$형태 착물의 자기모멘트 [A 및 B = Cl, O, N, Br]

  • Sangwoon Ahn (Department of Chemistry, Jeonbug National University) ;
  • Eu Suh Park (Department of Chemistry, Jeonbug National University) ;
  • Byung Bin Park (Department of Chemistry, Won-Kwang University)
  • 안상운 (전북대학교 문리과대학 화학과) ;
  • 박의서 (전북대학교 문리과대학 화학과) ;
  • 박병빈 (원광대학교 문리과대학 화학과)
  • Published : 1980.04.30

Abstract

A formula for calculation of the magnetic moments for octahedral $[Ti(III)A_3B_3]$ type complexes with axial symmetry has been developed and the magnetic moments for these complexes are calculated, using the experimental values of the distortion parameters$({\delta})$, spin-orbit coupling constants and orbital reduction factors. The calculated magnetic moments for axially distorted octahedral $[Ti(III)A_3B_3]$ type complexes are in resonable agreement with the experimental valuest It is found that the calculated magnetic moments decrease as the extent of axial distortion increases and the orbital reduction factor decreases. A calculation method of the magnetic moments for octahedral $[Ti(III)A_3B_3]$ type complexes which are in a ligand field of lower than axial symmetry has also been developed and the structure of distorted octahedral $[Ti(III)A_3B_3]$ type complexes are discussed on the basis of the of the calculated magnetic moments.

축방향대칭을 갖는 팔면체 $[Ti(III)A_3B_3]$형태 착물의 자기모멘트를 계산하는 식을 유도하여 distortion parameter$({\delta})$, 스핀-궤도 상호작용상수$({\zeta}')$ 및 orbital reduction factor의 실험치를 사용하여 이들 착물의 자기모멘트를 계산하였다. 축방향으로 일그러진 팔면체 $[Ti(III)A_3B_3]$형태 착물의 계산한 자기모멘트가 실험치와 비교적 일치하였다. 팔면체로부터 축방향 일그러짐이 커짐에 따라 그리고 orbital reduction factor가 감소함에 따라 계산한 자기모멘트의 값이 크게 감소하였다. 축방향대칭보다 낮은 리간드장으로 일그러진 팔면체착물의 자기모멘트를 계산하는 방법을 발전시켰으며 계산한 자기모멘트를 기초로 하여 일그러진 팔면체 $[Ti(III)A_3B_3]$형태 착물의 구조를 논의하였다.

Keywords

References

  1. Theory and Application of Molecular Paramagnetism E. A. Boudreaux;L. N. Mulay
  2. Some Aspect of Crystal Field Theory T. M. Dunn;D. S. McClure;R. G. Person
  3. J. Chem. Phys. v.3 J. H. Van Vleck
  4. J. Phys. Soc. (Japan) v.4 M. Kotani
  5. Some Aspect of Crystal Field Theory T. M. Dunn;D. S. McClure;R. G. Person
  6. Interscience v.10 Progress in Inorganic Chemistry M. Geloch;J. R. Miller
  7. Theory and Application of Molecular Paramagnetism E. A. Boudreaux;L. N. Mulay
  8. The Theory of Transition Metal Jons J. S. Griffith
  9. J. Korean Chem. Soc. v.23 S. Ahn;K. H. Lee
  10. Applied Wave Mechanics R. M. Golding
  11. Introduction to Ligand Field Theory C. J. Ballhausen
  12. Operator Method in Ligand Field Theory Watanabe
  13. Theory of Electric and Magnetic Suceptibilities J. H. Van Vleck
  14. J. Chem. Soc. R. J. H. Clark;J. Lewis;D. J. Machin;R. S. Nyholm
  15. J. Chem. Soc. (A) D. J. Machin;K. S. Murray
  16. Basic Principles of Ligand Field Theory H. L. Schlafer;G. Gliman
  17. Inorg. Chem. v.7 W. Gigenbach;C. H. Brubaker, Jr.