The Cation Exchange Separation of Metal-Trien Mixed Complexes

금속-Trien 혼합착물의 양이온 교환수지상에서의 분리

  • Yung-Kyu Park (Department of Industrial Chemistry, Yeung Nam University) ;
  • Chul- Heui Lee (Department of Industrial Chemistry, Yeung Nam University) ;
  • Mu-Kang Lee (Department of Engineering Chemistry, Yeung Nam Junior College)
  • 박영규 (嶺南大學敎 工科大學 工業化學科) ;
  • 이철희 (嶺南大學敎 工科大學 工業化學科) ;
  • 이무강 (嶺南專門大學 化工科)
  • Published : 1980.04.30

Abstract

The formation constants of the mixed-ligand complexes in the Cd(II), Cu(II) and Pb(II)-Trien-OH system were studied by polarograph. The formation constant $(log{\beta}_{ij})$ was determined at $25^{\circ}C$ in the ionic strength of 0.1. It was also confirmed that the mixed ligand complexes in this system were formed above pH 10.2, 10.5 and 9.0 for Cu(II), Cd(II) and Pb(II) by the calculation of the distribution for complexes at the various pH. Masking of Cd(II) by conversion to anionic EDTA-complexes has been used to separate Cu(II) from Cd(II) through passage of a combined Trien-EDTA solution on an cationic resin column. The optimal condition for the separation of Cu(II) from Cd(II) is confirmed at the pH range above 9.0, not only by considering the theoretical equation of the conditional-exchange-constant of metal on the cation exchange resin,but also by calculating the distribution of the mixed ligand complexes in the resin at the various pH with computer. By analyzing the synthetic sample of Cu(II) and Cd(II) with a EDTA masking at pH 9.5, it is found that the results of the experiment are satisfied with the theoretical value.

금속 Cd(II), Cu(II) 및 Pb(II)의 Trien-OH 계에서 ion강도 0.1, $25^{\circ}C{\pm}1$일때 혼합착물에 대한 안정도정수를 폴라그래프에 의해 구하였으며, 이들 혼합착물의 pH변화에 따른 분포상태를 컴퓨터로 계산하여 검토하였다. 또한 Cu(II)와 Cd(II)를 분리하기 위해 양ion 교환수지상에서의 조건분배계수이 이론식을 안정도정수를 이용하여 유도하였으며, pH변화에 따른 Cu(II)와 Cd(II)의 분리최적조건은 pH 9.0이상임을 알았다. EDTA를 가리움제로 하여 Cd(II)-Cu(II)-Trien-EDTA계에서 실험조건을 pH 11.0로 하고 Cu(II)를 Cd(II)로부터 분리한 결과는 만족할만 하였으며 이론치와 잘 일치하였다.

Keywords

References

  1. Helv. Chim. Acta. v.33 G. Schwarzenbach
  2. J. Amer. Chem. Soc. v.72 B. E. Douglas;H. A. Laitinen;J. C. Bailer
  3. Proc. Symp. Chem. Coord. Compounds v.1959 M. T. Beck;S.Gorog
  4. Sci. Soc. v.73 C. M. Reilley;R. W. Schmid;J. Elisha Mitchell
  5. Anal. Chim. Acta. v.19 J. S. Fritz;G. R. Umbrett
  6. Talanta v.5 P. Povondra;R. Pribil;Z. Sulcek
  7. J. Amer. Chem. Soc. v.75 E. J. Wheelwright;F. H. Speedding
  8. J. Chem. Soc Japan v.78 T. Takettasu
  9. Anal. Chem. v.28 L. Gorden;F. H. Firshing;K. J. Shaver
  10. Komplexony V Chemicke Analyse R. Pribil
  11. Japan Analyst v.4 M. Katayama;Y. Masuda;T. Tarutani;S. Misumi
  12. Analyt. Chim. Acta. v.11 R. G. Bovy;G. Duyckerts
  13. Japan Analyst. v.3 M. Honda
  14. 嶺南大學校 論文集 朴水圭;李哲熙
  15. 嶺南大學校 論文集 朴水圭;白性基;李哲熙;李武康
  16. J. Korean Chem. Soc. v.17 Y. K. Park;C. H. Lee
  17. J. Amer. Chem. Soc. v.82 D. D. Perrin;I. C. Sayce
  18. Inorg. Chem. v.2 R. S. Tobias;M. Yasuda
  19. Numerical Method and Fortran Programming D. D. Mccracken;W. S. Dorn
  20. Talanta v.14 D. D. Perrin;I. G. Sayce
  21. J. Amer. Chem. Soc. v.73 D. D. Deford;D. N. Hume
  22. J. Amer. Chem. Soc. v.83 W. B. Shaap;D. L. McMaster