Abstract
In response surface experiments, a polynomial model is often used to fit the response surface by the method of least squares. However, if the vectors of predictor variables are multicollinear, least squares estimates of the regression parameters have a high probability of being unsatisfactory. Hoerland Kennard have demonstrated that these undesirable effects of multicollinearity can be reduced by using "ridge" estimates in place of the least squares estimates. Ridge regrssion theory in literature has been mainly concerned with selection of k for the first order polynomial regression model and the precision of $\hat{\beta}(k)$, the ridge estimator of regression parameters. The problem considered in this paper is that of selecting k of ridge regression for a given polynomial regression model with an arbitrary order. A criterion is proposed for selection of k in the context of integrated mean square error of fitted responses, and illustrated with an example. Also, a type of admissibility condition is established and proved for the propose criterion.criterion.