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ABSTRACT

The statistical theory of factor analysis is briefly reviewed with emphasis on
the maximum-likelihood methood. A maodified version of Joreskog (1975) is used
for the implementation of the maximum-likelihood method. For the minimization
of the conditional minimum function, an adaptive Newton-Raphson method is

applied.
1. Introdution

Factor analysis is a branch of multivariate statistical analysis that is concerned
with the internal relationships of a set of variables. It is one of the statistical
techniques to resolve a set of variables in terms of a small number of hypo-
thetical variables, called factors. Although factor analysis has mainly develo-
ped in the field of psychology, its application has now become very popular
along with the use of digital computers.

The aim of this paper is to give a brief review of the theory of factor
analysis and the method to implement the algorithm of maximum likelihood
estimation. The main reason of choosing the maximum likelihood method is

that it is scale-free and it gives statistics for the determination of the best
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number of factors to use. A modified version of the algorithm of Jéreskog
(1975) is used. The estimates are computed by the Newton-Raphson method.
Most of the algebraic details of the derivation of the algorithm are omitted
since they can be found in the references. An exclusive bibliography of factor
analysis can be found in Harman (1976),

In Section 2 unrestricted basic factor analysis model is introduced with
notations. The maximum likelihood method is reviewed in Section 3. In
applying the Newton-Raphson method we used the adaptive rule suggested
by Ramsay (1975). Two factor rotations, varimax and promax rotations,
are reviewed in Section 4. In Section 5 a brief description of the computer
program outputs is given with an example. All algorithms were programmed
in Fortran IV. Computations were in double precision on IBM 370/125 at

Seoul National University Computer Center.

2. Notations and Preliminaries

We consider the basic factor analysis model
x=Af+e, 2.1
where x is a column vector of p responses, A=(A;;) is a pxk matrix of unk-
nown factor loadings, f is a column vector of £ common factors, and ¢ is a
column vector of p residuals. A;; denotes the loading for the i-th variable on
the j-th factor.

The residuals ¢ are assumed to be independent of each other and of the
common factor f. The variance (or dispersion) matrices of x, f, and ¢ are
respectively denoted by Z=(oi;), ®, and &2 ¥? is a diagonal matrix with
diagonal elements &;2(i=1,..., p), which are called unique variances. Wit-
hout loss of generality we assume that @ is an identity matrix of order £,
that is, the common factors are uncorrelated and have unit variances.

By the assumptions we have made, 2 is given by the equation

Z=AA"+T* (2.2)
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The elements of A4 and ¥ are usually unknown parameters which have to be
estimated from experimental data. Let § denote the pxp sample covariance
matrix whose elements are usual unbiased estimates of the elements of X
obtained from a random sample of size N. The estimation problem is then
to fit the matrix 2 of the form (2.2) to an observed sample covariance
matrix S.

When £>>1, there is an infinity of choice for /. This indeterminacy arises
from the fact that a postmultiplication of A4 by an arbitrary %Xk orthogonal
matrix leaves Y unaltered. Hence to obtain a unique set of parameters and a
corresponding unique set of estimates, we must impose some restrictions upon
the elements of A.

In the following section we assume that the number of factors £ can be
specified in advance. In practice we have to choose the smallest £ for which
the model fits the data. For example, we may use the sequential procedure
suggested by Lawley and Maxwell (1971, Section 4. 4).

There are many different methods of fitting 3 to S. The traditional iterated

principal facor method minimizes the unweighted sum of squares
U=tr(§—-2)2 (2.3)
which is equivalent to the unweighted least squares (ULS) method (Joreskog,
1975) and also to the minres (a contraction of “minimum residuals”) method
proposed by Harman (1976). A disadvantage of the ULS method is that it

is not scale-free and is therefore usually applied to the correlation matrix R

rathen than S.
Another method to fit X to S is the generalized least squares (GLS) method
which minimizes

G:_;_ tr(I,—S-13)2, (2.4)

where I, is an identity matrix of order p. This method is proposed by Jore-
skog and Goldberger (1972). The GLS method is scale-free and under the

assumption of normality is asymptotically equivalent to the maximum likeli-
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hood (ML) method, which will be studied thoroughly in the following

section.
3. Maximum Likelihood Estimation

In the basic factor analysis model (2.1) we assume that f and ¢ follow
independent multivariate normal distributions with zero mean and with resp-
ective covariance matrices Jx and @2, where by the assumptions in Section 2
I, is an identity matrix of order % and ¥? is a diagonal matrix with diagonal
elements ¥'?, i=1,..", p.

Suppose that a random sample of N observations of x is obtained. Then
the elements of the sample covariance matrix S, or of nS, follow a Wishart
distribution W(Z,n) with n=N—1 degrees of freedom. Hence the logarithm
of the likelihood function L is given by

log L= —%n [log |3 | +tr(3-18)]+logC, (3. 1)

where C is a function of observations. Just for convenience, instead of max-
imizing L we want to minimize
F(AT)=tr(Z71S)—log| 2~ 15| —4. (3.2)

Then, according to Lawley and Maxwell (1971), a constant times the min-
imum value of F in (3.2) can be used as a “goodness of fit” chi-square
criterion.

Joreskog and awley (1968), to find the minimum of F in (3.2), introd-
ucec a two-stage procedure which is proved to be successful. We first find
the conditional minimum f(¥&), for a given ¥, such that

f(?ﬁ'):rr/llin F(AT). (3.3)

Thus the problem of minimizing F with respect to A4 and & has been tran-
sformed into that of minimizing f with respect to 7.
The minimization problem of f in (3.3) may be accomplished by using a

method of Fletcher and Powell (1963) or Joreskog and Lawley (1968). Jor-
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eskog (1975) has successfully applied the Newton-Raphson method which
converges quadratically to solve the minimization problem. In this paper we
adopt a modified version of the algorithm suggested by Joreskog (1975).

As mentioned in Section 2 there is an indeterminacy in the choice of A.
To eliminate this indeterminacy we impose that A’'%~2/4 be a diagonal mat-
rix. If the vatiates are rescaled so that the residual variance of each variate
is unity, the jth diagonal element of A'¥~24, 3:(A:;/¥:)% is the total vari-
ance in x due to the jth factor. Thus our choice of factors is such that the
first one makes a maximum contribution to the variance in x, the second
one makes a maximum contribution subject to being uncorrelated with the
first one, and so on.

Since the function values and the first and second derivatives of f in (3. 3)
may be represented In terms of eigenvalues and eigenvectors of a matrix, we
introduce some notations in the following.

Let y,<7»<...<7» be the eigenvalues of ¥S-¥ and let w;, wy...,w, be an
orthonormal set of corresponding eigenvectors. Let [I'y=diag(y;, 7a...7:) and
Iy=diag (Yei1 Thezeeos 7p) and let Qy=[w;, wy..., wz] and Qp={Wk.1, Wrss
...,wp]. Then according to Equation (19) and (23) of Joreskog (1975), the
conditional solution A and the conditional minimum f given ¥ are respecti-

vely given by

A=TQ (I 1—1)* (3.4)
@)=Y, (logra+-—1). (3.5)
mek+1 T'm

Note that when one or more of the ¢; are close to zero, Equation (3.4) is
not well defined in the sense that the corresponding rows of / are diminis-
hed. Thus, we give seperate dicussion to the case when one or more of ¢.'s
are close to zero at the end of this section.

From Equation (41) and (42) of Joreskog (1975) the first and second

derivatives of f in (3. 3) are respectively given by
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where w;» is the ith element of the eigenvector w.. when one or more of
the ¢;'s are close to zero, the computation of the first and second derivatives
are numerically unstable. To overcome this difficulty Joreskog suggested the
transformation from ¢; to v; defined by

vi=logp?, pi= €'l (3.8)
Using this transformation the first and the second derivatives in (3.6) and

(3.7) are respectively given by

of - i (I—TL)wim2 (3.9)

0v; o m=k+1

and

%f __5. 0f &
o, 0 T+ > WinWin

b
[Z Mi—win wjn+5ij]‘ (3.10)

From the relation Y ,.%f., wimwjm:5,~j—2,,f1 WinWin, When i1, Tkaeerr 7s
are all close to one, the second derivatives in (3. 10) can be approximated by

&/ =( f wimwim)z- (3.11)

aviavj - me=k+1

Let v be the column vector of »;/s and let 2 and H be the column vector
and matrix of the corresponding first and second derivatives, respectively.
Then the algorithm of the Newton-Raphson produre is given by

H® g = (3.12)
D =pCP — g, (3.13)
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where the superscript s denotes the sth iteration and §% is a column vector
of corrections deterined by (3.12).

Ramsay (1975) proposed an adaptive rule to improve the rate of conver-
gence of iterative procedures in solving implicit equations (see also Ramsay
(1977)). Here we apply the Ramsay’s adaptive rule to the Newton-Raphson
procedure defined by (3.12) and (3. 13).

Let 2 be the vector of estimates at sth iteration. Then the adaptive Ne-
wton-Raphson procedure is defined by

;((s-&-l):ﬁ;(s)_l_(1__0)0(:4-1), (3. 14)
where v¢*? is the vector of estimates computed by Equation (3.13) and 6
is the acceleration parameter. As mentioned in Ramsay (1975), by an appr-
opriate choice of f, we can expect to

a) damp out oscillation of iterates by choosing

0<C0<1
with more and more damping being induced as §—1,
b) accelerate slow convergence by choosing
6 <0

with more and more acceleration being induced as §— —co,
Note that if § is very close to one, then the iteration is forced to terminate
too soon before a satisfactory convergence is obtained. Thus in practice we
set upper and lower limits of § to be used.

Ramsay (1975) also developed a rule which permits the recalculation of §
after every third every third iteration as follows. Let ., be the value of &

used over the last three iterations. Then the updated #,., is given by
Orew=1—(1—=0u0) || Ao“2 || /]| A%, (3. 15)

where || - || is a measure of lengths of vectors and Ao“"P and A%“~1 are

the first and the second difference vectors, respectively, defined by
A;(&—l):;(s)___z;(s—l)’ (3. 16)

A2;(s—1)___A;(s)_Az;(s—-l)_ 3.17
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For the convergence criterion we may use

max | ;" —5, | < e
i

The initial value of v in the Newton-Raphson iteration (3.12) and (3. 13)

may be chosen as

;P =log[(1—k/2p=/sii], (3.18)
where s' is the ith diagonal element of S§-!. This choice has been justified
by Joreskog (1963) and is widely used now.

In solving the system of equations (3.12), we use the triagular factoriza-
tion H=TT’ of symmetric positive definite matrices, where 7T is a lower
triangular matrix. But, note that the exact matrix H of second derivatives
given by (3.10) may not be positive definite in the beginning. Therefore,
we use the approximate matrix of second derivatives given by (3. 11), which
is always positive definite, as long as the maximum correction is greater
than eg(e.g., eg=0.1). After that, if H is positive definite, we use the exact
second derivatives.

Because of model in appropirelty or small sampel size, the likelihood func-
tion (3.1) may not have any true maximum for positive unique variances.
In such case one or more of ¢/s tend to zero (or u/s tend to—co) in the
course of iteration and would become negative if allowed to do so. This situ-
ation is usually referred to the Heywood case.

In Heywood case the system (3.12) is unstable in the sense that 0f/0v;—0
and 0%/0v:0v;—0, j=1,..., p. In this case, since the ith element of % and
ith row and column of H are near zero, the system (3.12) may produce a
bad correction vector §. Joreskog (1975) suggested a simple and effective
way to deal with this problem. We delete ith equation in the system (3.12)
and compute the corrections for all the other v;/s from the reduced system.
The correction term for v; is then computed as

8= (2f/00) [ (3% /30:).
In practice we may take »; as a Heywood variable if 92f/80:2<0. 01,
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In computing the numerical solution ;i of v;, if v; is a Heywood variable,
2; decreases very rapidly. Thus, if 2; is less than log(¢), then we fix z;,- at
log(€) and the function f in (3.5) is minimized with repect to the other
variables. After the iteration is finished we set the Heywood variable ¢; to
zero and compute 4 according to the following modified method.

When we have improper solutions, i.e., when one or more of the numer-
ical solutions (2;1,g212,..., gip of ¢, ¢s,...,¢0p are zero or close to zero, we have
to modify (3.4) to compute the loading matrix 4. To apply the Joreskog’s
(1975) modification we let S~ be decomposed by S-!=77’, where T is a
lower triangular matrix. We let d,>d,>...>d, be the eigenvalues of [,—
T'W2T and let u;, u,,...,u, be an orthonormal set of corresponding eigenvec-
tors. We also let D,=diag(d,, d,,...,dk) and let U,=[U,;, U,,...,uz]. Then
according to Equation (60) of Joreskog (1975) the conditional solution A is
given by

A=T'"'UD'2 (3.19)
Note that when one or more of the ¢’s are zero, the corresponding eigen-
values in D, are one and therefore A in (3.19) is well defined. Note also
that the / in (3.4) and (3.19) are actually equivalent.

In each iteration the computation of the first and second derivatives of f
requires the eigenvalues and eigenvectors of asymmetric matrix. It is well
known that the QR algorithm is the most efficient method available in the
computation of eigenvalues. But it very often fails give orthogonal eigenve-
ctors corresponding to eigenvalues which are equal or very close to zero.
Thus, in the program, we would choose the Jacobi method which is known
as “slow but safe” method. The Jacobi method usually requires about ten
times as many operations as the QR method, but it is safe and sure in all
situations and has the advantage of being capable of producing the eigenve-

ctors along with eigenvalues.
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4. Factor Rotations

As mentioned in Section 2 the factorization
2=A44T?
is not unique in the sense that a postmultiplication of A by an arbitrary
kxk orthogonal matrix leaves Y unaltered. Thus, once a factor matix is
obtained, we may want to find an orthogonal transformation of the factor
matrix which is more meaningful and can be interpreted more easily. Some-
times the pattern of loadings may be further simplified by transforming to
oblique (or uncorrelated) factors.

There are numerous principles and procedures for factor rotation: analy-
tical or topological methods and orthogonal or oblique transformations. For
the analytic orthogonal rotation the varimax method of Kaiser (1958, 1959)
is most widely used, and for the analytic oblique rotation the promax met-
hod of Hendrickson and White (1964) works well in practice. In this section
we give a brief review on these two methods.

Given an unrotated factor matrix /4, the varimax criterion requires that we
make orthogonal rotations on this matrixsnch that

is maximized, where %7 is the communality of the ith variable defined by
k

R2=Y A2, i=1,...p. (4.2)
i=1

The program for the varimax method can be found in the IBM Scientific
Subroutine Package.

Starting with a matrix of factor loadings that has been rotated to orthog-
onal simple structure (e.g., varimax rotated factor loadings), the promax
method transforms this matrix to an oblique simple structure. We let A=

(4i;) be the varimax transformed matrix of factor loadings and define a
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px k matrix Q= (ri;) by

gi5=| ;™| Ais, (4.3)
with m>1. Thus each element of Q is, except for sign which remains unc-
hanged, the mth power of the corresponding element of 4. Then the promax
method seeks a transformation matrix U, not necessarily orthogonal, such
that the columns of AU fits the columns of Q, generated by (4.3), in the
least squares sense. It can be easily shown that the required matrix U is
given by

U= (A A)"1AQ. (4.4)
We now normalize the columns of U so that the transformed factors have
unit variances. Then the matrix of promax transformed loadings is given by

A*=A(UD), (4.5)
where

D?=diag[ (U'U)"1].
According to the report of Hendrickson and White (1964), the optimal value
for m is 4 for the majority of cases; however, for the occasional factor
analysis where the data are particularly “cleanly” structured, a lower power

seems to provide the best solution.

5. A Numerical Example

In this section we describe what the program does. The input data may
be raw data, covariance matrix, or correlation matrix. With a correlation
matrix R of order pxp, the performs a sequence of factor analysis for each
number of factors

k=ky, ki1, ... ky.
For each k, the main outputs are the unrotated factor matrix, the unique
variances, eigenvalues of ¥'S™'¥ at the minimum, residual correlation matrix,
the varimax and/or promax rotated factor matrix, and the correlation matrix

of factors after promax rotation. Various statics are produced to help the
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determination of the best number of factors to use.
To introduce the statisice we let Co=(N—1)—(2p-+5)/6 and let f(&) be

the value of conditional minimum defined by (3.3). Then
Xit=(Co—ab) F&) 6. 1)

has approximately chi-square distribution with its number of degrees of fre-
edom given by

1

di=—[(4—B)*— (p+H)]. (5.2)

~

(For the details, see Lawley and Maxwell (1971)). If the value of %,% in
(5.1) is not significant, we accept the hypothesis H; that, for specified £,
there are £ common factors. One of the main advantages of using the max-
imum likelihood method in factor analysis is the availability of statistics to
determine the number of factors. But, the value of ¥;? is not always a good
indicator of “goodness of fit” in pratice. Tucker and Lewis (1973) introdu-
ced a useful statistic, called relibility coefficient, to indicate the quality of
representation of interrelations among attributes. The reliability coefficient
pr is defined by
pr=(My—My) /(M,—1) (5.3)

where M0=C'o(—log]R])/[—é-p(p——l)] and Mr=¥:%/ds, ¥i® and di are def-
ined by (5.1) and (5.2), respectively. The formula (5.3) is slightly diffe-
rent from Equation (11) of Tucker and Lewis (1973). We used the expres-
sion of Joreskog (1975). The reliability coefficient p, indicates how well a
factor model with & common factors represents the covariances among
variables. Lack of fit would indicate the relations among the variables are
more complex than can be represented by £ common factors.

An example is presented in Table I, which is from Joreskog (1975). Table
1 is the correlation matrix of intelligence tests administered to 286 senior
high-school students at a high school, which was originally gathered and
analyzed by Thurstone (1940). Nine tests are wused in Joreskog just for
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illustration.

The data were analyzed with k=1,..., 5 and e="3. For the convergence
criterion €=10-5 the test results which are not presented here show that
usually one or two extra iterations are required. Table 2 shows the wvalues
of X% and pp. For k=1 or 2, X;? is too significant to be accepted and p: is
not large enough. For k=3, %;? is still significant but p; is sufficiently large.
For k=4, X:? is not significant at significance level 0.05 and p; is large
enough. For k=5, it is obvious that the data are overfitted. Thus £=3 and

k=4 are candidates for the number of factors.

Table 1. Correlation Matrix for Intelligence Tests
Test* 1 2 3 4 5 6 7 8 9
1 1.000
2 0.684 1. 0600
3 0.284 0. 368 1. 000
4 0.177 0.186 0.332 1. 000
5 0.072 0.091 0. 358 0.727 1. 000
6 0.227 0.232 0.415 0.577 0.519 1. 060
7 0.288 0.421 0. 096 0. 099 0. 052 0. 240 1.000
8 0. 029 0.141 0. 149 0.305 0. 304 0. 320 0.342 1. 000
9 0.321 0. 352 0.120 0. 306 0.178 0.322 0. 500 0.401 1. 000

*1: Additon, 2: Multiplication, 3: Arithmetic, 4: Figures, 5: Cards, 6: Squares,
7: Identical Numbers, 8: Identical Forms, 9: Repeated Letters

Table2. Test Values for Number of Factors

significance
k X ds ps probability of X
1 414. 00 7 0.409 p<<0. 001
2 135. 99 19 0. 746 p<<0. 001
3 32.83 12 0.928 p<0. 005
4 10.74 6 0. 967 0. 05<p<<0.10
5 3.30 1 0. 905 0. 05<p<<0. 10

The intermediate values of the maximum likelihood method are given in
Table 3, Column 2 of Table 3 indicates what kind of second derivatives are

used: 0 means approximate and 1 means exact. Column 3 gives the function
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value f(if}) The maximum correction and maximum gradient appear in
Column 4 anc Column 5, respectively. The last column is the value of §

defined in (3. 15).

Table 3. Intermediate Values of the Minimization
Iteraticn Type Function Max. correction Max.gradient [/
0 — 0. 1904599 - 1.24x107! -
1 0 0. 1210846 4.17x107* 2.86%x10°2 -
2 0 0.1176815 1.45%107! 2.91x107° —
3 1 0.1176052 4.26x1072 1.00x10°3 —0. 052
4 1 0. 1175988 1.67%x10°% 6.91x10°5 —0.052
5 1 0.1175988 4.94%x107¢ 3.56x10°8 —0.052

In Table 4 we give the unrotated factor loadings for £=3. The last column
of Table 4 is the unique variances. Since all loadings on the first factor are
positive and fairly large, it is a so-called g factor of general intelligence.
But the interpretation of the second and third factors are not obvious. The
varimax rotation and the promax rotation with multiplier m=4 are perfor-
med to the loadings of Table 4, and the results are shown in Table 5

(loadings after promax rotation appear within paranthesis).

Table 4. Unrotated Factor Loadings for £=3

i i Az Ais &

1 0. 569 0.476 —0.197 0.411
2 0.674 0. 571 —0.151 0.198
3 0. 503 —0.036 —0. 228 0.693
4 0. 690 —0. 505 —0. 061 0. 263
5 0. 604 —0. 588 —0.100 0.279
6 0.628 —0.283 0. 056 0. 522
7 0.448 0.317 0. 482 0. 466
8 0. 405 —0.146 0. 429 0. 631
9 0.537 0.131 0. 464 0.478

The pattern of the varimax (or promax) rotated factor loadings in Table

5 is much simpler than that of the unrotated factor loadings in Table 4,
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Table 5.

Varimax (Promax with m=4) Rotated Factor Loadings

—

2[‘1

Aiz

Atz

© 00 N Ol W W N~

0.085 (—0.036)
0.079 (—0.077)

0.747 ( 0.769)
0.856 ( 0.866)

0.151 ¢ 0.022)
0.252 ( 0.118)

0.411 ( 0.396) 0.371 ( 0.358) 0.012 (—0.136)
0.837 ( 0.865) 0.091 ( 0.019) 0.167 (—0.003)
0.845 ( 0.903) —0.001 (—0.102) 0.081 (—0.085)
0.613 ( 0.591) 0.158 ( 0.052) 0.279 ( 0.158)

—0.022 (—0.192)
0.289 ( 0.215)
0.174 ( 0.031)

0.283 ( 0.168)
—0.038 (—0.181)
0.216 C 0.078)

0.673 ( 0.711)
0.533 ( 0.545)
0.667 ( 0.674)

The first factor has high loadings for tests 4-6, which may be interpreted

as spatial factor. The second factor has high loadings for tests 1-2, which

is a numerical factor. The third factor is concernec with tests 7-9, which

may be interpreted as a perceptual speed factor. Note that test 3 (arithmetic)

has almost equal loadings on the first and second factors. Thus four factor

analysis is applied to the data on Table 1,

Table 6. Promax (with m=3) Rotated Factor Loadings for k=4

i ki1 Yiz 2,'3 2.’4 ¢i2
1 —0.047 0.078 —0. 900 0.044 0.225
2 0.113 —0.040 —0.677 —0.19 0.341
3 1.001 0.001 —0.028 0. 047 0. 000
4 —0.091 0.947 —0. 085 0.049 0.184
5 0.037 0.830 0. 055 0. 049 0.184
5 0.037 0.830 0. 055 0. 065 0.332
6 0.116 0.511 —0.038 —0.180 0.516
7 —0.034 —0.197 —0. 089 —0.776 0.431
8 0.038 0.154 0.224 —0.576 0.621
9 —0.097 0. 094 —0.126 —0.630 0.501

When four factor analysis was applied to the data on Table 1, the third

variate appeared to be a Heywood variable. The first factor has a
of 1,000 for test 3,

shown in Table 6.

loading

The promax (with m=3) rotated factor loadings are

The first factor is obviously an arithmetic factor. It is
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interesting to note that the remaining factors can be intereted as the three

factors in the three factor analysis.
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