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Wave Phasce Shift of a Submerged Circular Cylinder

by

Hang Shoon Choi*

Abstract

Herein the flow past a submerged circular cylinder with a free surface is mapped onto a

reference plane, in which the free surface is transformed to a straight line and the cylinder to a

certain shape. A global mapping function between two planes is sought in a manner that linear

free-surface elevation is generated in the physical plane. Hereby the Froude mumber Fa, based

on the submergence depth A’, is assumed to be of order 0(1) and the ratio a’/A’ (a’=cylinder

radius) of order o(l).

Waves thus obtained are slightly different in magnitude and phase from usual linear solution.

The resulting free wave starts advanced ahead compared to the classical result and its amount

depends on Froude number. Based on the present concept wave forces are calculated. In this type

of approach the body boundary condition gives more influence on wave resistance than that by

the free surface in the speed range Fi>l.

1. Introduction

Many attempts have been performed to get an ap-
proximate solution for the problem of the flow past
a submerged circular cylinder. A gencral review on
this topic is well surveyed in the book of Wehausen
and Laitone (1960, p. 374). Usually by introducing
a proper smallness parameter, the flow near a free
surface and also near the cylinder is perturbed in
power series of the parameter.

The main difficulty in this problem is well recogni-
sed and it is the non-linearity in the boundary con-
which

dition on the free surface, is unknown a

priori.

Tuck (1965) analysed the flow pattern up to the
second order consistently and pointed out that the
boundary condition on the free surface is more im-
portant to wave resistance than that on the body

over all speed ranges.
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By employing the method of matched asymptotic
expansions, Dagan (1971) obtained the zeroth-order
inner and the first-order outer solutions. In this paper
the unknown free surface is mapped onto a straight
line in a reference plane and a global mapping
function between this and the physical plane is
sought by following the idea of “displacement poten-
tial” in the sense of Nobless (1974).

obtained as an

The displacement potential is
integral of Havelock source potential with intensity
of time-integrated sources on a distribution domain.

The mapping function may be interpreted as gra-

dient of the displacement potential.

2. Description of Problem

A long cylinder with uniform circular cross-section
is submerged in a uniform flow U’ normal to its
axis. The fluid is assumed to be inviscid, incompres-

sible and fluid motion be irrotational. Let the initial
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Fig. 1. Physical z’-plane

transient motion and the surface tension on the free
surface be neglected. The fluid is extended laterally
to infinity. In rectangular cartesian coordinates the
free surface and the cylinder are expressed as y'=
R'+8'(z’) and |2’|=a’, respectively, as shown in
Fig. 1. Where
quantities with dimensions.

Let f'=¢’+¥’, w'=u"—iv’ and z’=z’+iy’ be a

complex potential, complex velocity and complex

symbols with appostoph denote

length variable, in this order. The boundary condi-
tions in dimensionless form, dividing through the
uniform flow U’ and the cylinder radius 4’ as basic

speed and length, are

¥Y=h on y=h+d6{z) (D
¥=0 on |z]l=1 )
w=]1, 6(z)=0 as z-+—co 3
_od . N
Re(w“«agiﬁ-zuw);o on y=h+d(zx) G))
with u:%a;;-
Radiation condition which states that waves
propagate downstreamwards. 5)

Wherd Re and Im are referred to the real and

imaginary part of complex quantities, the upper

bar stands for their complex conjugate and g is
acceleration due to gravity.

This problem is thus characterized as petential

boundary-value problem of the Laplace equation,

which defies to render an ‘extact’ solution, even not

for numerical approach.
3. Refcrence Plane

We introduce a reference plane g, on which the
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Fig. 2. Reference {-plane

physical z-plane is conformally mapped in such a
manner that the free surface becomes a straight line
and the cylinder a certain ‘corresponding’ one as
shown in Fig. 2.

On this plane the kinematic boundary conditions
(egs. (1), (2)) and the upstream condition (eq. (3))
are prescribed on Im{=X, on the corresponding
cylinder and {——cc. However, the dynamic boun-
dary condition (eq. (4)) and the radiation condition
(eq. (5)) fail to keep any meaning because of the
straight free surface Im{=1.

In this context this reference plane may be consi-
dered as the same flow model of the inner problem
in the method of matched asymptotic expansions as
adopted by Dagan (1971).

Thus the dynamic condition and the radiation con-
dition have to be suspended from being applied until
later. Only the kinematic conditions are to be satis-
fied in the { plane.

Accordingly the mapping function between two
planes, which is the essence of this problem, should
bear some special properties so that the former two
conditions could be fulfilled in the physical plane.

Even under the above manipulation, this type of
approach is complicated and interwoven non-linearly,
more difficult than the matched asymptotic expansion
mcthod in some semse.

The merit of this approach, however, may be [ound
in the fact that the free surface conditions could be
treated more rationally—at least what the kinematic
part and the flow near both ends of the cylinder are
concerned. This may be argued by pointing out that

the mapping is closely related with the Lagrangian
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description of fluid particles in the region of the free
surface (Wehausen, 1969). Furthermore it has some-
thing in common with the streched obserbation on
an abrupt change of flow (Van Dyke, 1964, p. G9).

Anyhow in this type of approach, more attention
is paid on the free surface and the body boundary
condition may not be sufficiently cared.

The body boundary condition is thus replaced by
a requirement that corresponding cylinder should
give a mapped cylinder as similar as possible to the
given one in the physical plane.

In the reference plane the corresponding cylinder
may be generated by some singularity distributions.

On this stage of analysis, this singularity distribu-
tion will not be clearly figured out until the mapping
function is found.

In the light of the above rather loose requirement
the singularity distribution, which describes flow
exactly in an unbounded fluid for a circular cylin-
der, is chosen for the first approximation, but with
a modification factor a of its intensity.

This modification factor will be determined later
as a part of solution in such a manner that the
body boundary condition may be improved to some
extent.

Thus we have a complex potential in the reference

plane as follows:

ro=cta( o) ©)
where with =1, this complex potential exactly
describes the fluid motion far away from a cir-
cular cylinder in an unbounded fluid and X is
associated with the real submergence depth h.
This potential satisfies the kinematic condition on
Im {=X and the upstream condition as {— —oo.
The corresponding cylinder is obtained through

tracing streamline, beginning with the front
stagnation point on the cylinder.

Then this potential satisfies the kinematic boundary
condition along the corresponding cylinder. Thus

all necessary conditions are satisfied sofar.

4. Mapping Function

Because of the intractable dynamic boundary con-

dition(eq. (4)), it is hardly possible to derive exact
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mapping function. There are some possible ways to
develope an approximate solution. For example, we
may define a relation of Z=2+F(z) and expand F(z)
into power series of a small parameter(see Noblesse).
Where Z is natural coordinate and z undisturbed
reference coordinate. Noblesse defined the function
F'V(z) as gradient of the “displacement potential”,
which is given by an integral of product of usual
Havelock source potential and z-integrated sources.
In his analysis an identity exists between the linear
wave clevation and the linear vertical displacemeny
D=k

where @ denotes the thin-ship potential, ¥ the

at y=h

displacement potential, the subscripts the partial
differentiations and #, is fundamental wave num-
ber defined by g/U"%

Here we utilize this identity and demand that the
linear free-surface elevation is to be deduced from the
mapping function F({) along Im {=X, but possibly
with different magnitude and at different location.
Thus we at least have the value of the mapping
function on the line Im =1,
11
£ -2
at {=§+ix (7)

~

where relations between & and z,

5(z)= —a’Im { : — 2iv I(in(C—2i0)) }

and between
% and h should be determined from the mapping
function. I (£) is defined by
e B (—¢) (see Salvesen, 1969).

TFrom Abramowitz and Stegun (1964), we can show

that I(%) has a series expansion

(= ——Ing—ir— £ ) ©

»=1 nen!
and an asymptotic expansion

] at
1)~ (é +El‘7+ Z—@L 24)

~(1+sign (Im Z))ize ™5, @

where y is the Euler constant and the sign is
taken in accordance with the radiation condition.
By taking the ratio of the cylinder radius to the
submergence depth as small parameter, the boundary

condition is made linearized in the from,

Re(di‘({—zl—h'uf(z))zo at Imz=h. (10

A mapping function F(Z), which satisfies this
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linearized free-surface condition, has a known ima-

ginary part along Im {=1,

I FO G+ =a¥( 52

This function should be regular in the lower half

—‘erReI(iu(éhix)). aun

plane Im <% for harmonic continuation of the map-
ping. FY()has a limit value 2vra®(1+sign(g))ev*~iv
as {—+co, which is bounded by 4uvra’e™* if vis of
order 0(1).

Then the term of F®(¢)—-FV(do) converges
absolutely for sufficiently large |¢I,

F0 () —F0 (oo} | <

where M is a real constant.

On the other hand the term has a pole at {=0 in
the lower half plane. We remove this pole by tran-
slating it to its image point with respect to the line
Im {=%.

Finally the function FV(Z) satisfies the Holder
condition and the problem turns to a Riemann-Hilbert
problem in the lower half plane Im {<X. This can
be solved by Cauchy integral along Im{=x (Musk-
helishvili 1953, p.110).

We again add a term 1/2 (1+sign (Img)) F(eo) to
the result in order to meet the radiation condition.

The result of this integral is easily seen as

,é:lézi—+iu1(z’v(£—2ix)) f+c a

where C is a complex constant.

z=f+2a® {

This complex constant may be considered as one
degree of freedom in this concept. This freedom is
so utilized that the origin of {-plane corresponds to
the origin of the physical plane. Accordingly C is
given by

C=—ia® {1/A+201 (207} ] 13

As will be noticed later this constant plays an in-
portamt role in this problem.

Eq. {12) may be a generalisation of Dagan’s result
and a modification of the displacement potential.

However, eq. (12) contains no displacement effect
of the singularity itself, but only terms from its
image singularity. It is due to the special choice of

the mapping.

5. Determination of Unknowns « and %
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There are some possible flow models to determine
the unknowns (Dagan, 1971).

The underlying idea is that the modification factors
a and X are so determined that the body boundary
condition is to be improved to some extent and at
the same time the line Im{=x should represent the
free surface in the physical plane.

Following the line of this thought the abscissa of
stagnation point near the leading edge is chosen to
be unity with minus sign in the physical plane.

Replacing ¢ by au=-—2d+i(1—&)X and z by—1
and taking the real part of the right-hand side of

eq. (12), we get an expression for a and X%,
o [+4 2 . 1 _ Vax
1=xd [I“LZ(Y) {d~—2+<1#~+é)2+ > Im
Foul1+8) i)~ 1203 | | (14)
where Z5r is a solution of df/dg=0 from eq. (6)

IR IECNENC Rt
L))

2d

Furthermore vz is the nondimensional wave number
based on % From eq. (14) unknowns @ and ¥ are
evaluated for given (a/%) and vy, meanwhile by
applying the upstream condition to eq. (12) a relation
between & and X is found,

h=x—a?/x—2va®Re(2v1). (15)

For actual numerical calculation, it is more con-
venient to prepare a diagram for a and X/A for given
submergence depth £ with Froude number F,=U’/
(gh’)1”? as parameter.

These are illustrated in Fig. 3 and 4.

From eq. (15) the relation between % and ¥ can be
examined for two special cases: for large values of

X, i.e. for deep submergence, it becomes A=)+

1 2 3
2 (f;c‘> 0 <Z>

It implies that A is practically equal to % not for
very high speed. On the other hand for small values
of %, i.e. for shallow submergence, eq. (15) has
another form

h=X—a?/%+2vale?* (y+In2v1).

At this degree of approximation, the complex
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Fig 3. Mofibying factcer a for doublet strength

Fig. 4. Modifying factor ¥ for submergence depth
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velocity in the physical plane can only be expressed
implicitly in terms of reference variable {.

_ df _ dfdg

e )

=" 1y 1
=20 2o e

In the lower plane Im 2z<{k, the denominator has

VI(in(C—2i1))) }

neither poles nor zeroes, while the numerator is
exactly zero both at the leading and the trailing
edges.

6. Waves and Wave Forces

The free surface in the physical plane can be ty,ceq
from eq. (12) along the line Im {=X. It should be
observed that the line Re =0 in the range of 0<
Im{<x is mapped on a curve in the physical plane.

Its abscissa is given by
—2vx)

amn

In particular eq. (17) becomes —2va’ze**(1—e™*)

z=—2va’n (e —¢€

on the free surface and thus the free-wave system
does not begin with z=0, but with an advanced
phase-shift of the amount above.

This phase shift increases with decreasing the
submergence depth and with being closed to a certain
speed (Fx=0.8) as shown in Fig. 5.

At the same time the cylinder can be traced in
each plane; in the reference plane we can follow the
Vave Shift
g’

57

&)

>
Seo]

Fig. 5. Wave shift in front of the cylinder
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streamline Imf({) which has the same value as Im
f(&se) in eq. (6).

It is well known that a doublet in a uniform flow
experiences horizontal and vertical forces(Havelock,
1926).

The present result looks very similar to the con-
ventional linear one, but with modification factor «
for the doublet strength and modified submergence

depth % for the actual submergence depth & as belows

R=A4mvlate?* (18)

and
L=—a'/(2v23) x (142X + 42— 8033~ P*Rel (201))
(19)

where all forces are divided by the buoyancy prg.

For cases of A=2,4 numberical results are de-
monstrated in Figs. 6~9 in comparison with those
of Havelock and Tuck. It is immediately noticed that
the present result is most close to the consistent
second-order theory of Tuck. If we regard the roles
of modification factors a and X as representing better
treatment of the body boundary condition and the

free-surface condition, respectively, (in fact it is

o5 o6 of of ! i '

Fig. 6. Wave resistence for h’=2. 0a’
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Fig. 7. Life for h’=2. 0a’
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Fig. 9. Life for h’=4.0a’

not easy to clearly separate two effects, especially
when the cylinder is not deeply submerged), it
leads us to conclude that ¥ is more important to
wave forces in low speed range. In moderate speeds
the contributions of « and X to wave forces are
comparable, meanwhile @ plays a more important role
in high speed range. Indeed this conclusion is res-

tricted to the flow model we take.

7. Discussions

For unbounded fluid as a limit case £ is set to
infinity in eqgs. (12) and (16).

From Figs. (3) and (4) it is immediately recogni-
sed that the limit values of « and X/4 are both unity
for all speeds. As a result the mapping function
reduces simply to 2=={ and the complex velocity to
w=1—1/0 ie w=1—1/2%

This confirms the fact that the fluid motion past
a circular cylinder in an unbounded fluid is modulated

far from_it by a double with unit strength at the

Journal of SNAK Vol. 17, No. 1, Marck 1980
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center of the cylinder.

Another interesting fact to mention is that the
traced dividing body shows very similar configuration
to a circle for all submergence depths and speeds.

Finally this result may be regarded as the first
approximation with respect to the smallness parame-
ter.
in a

Further approximations may be persued

similar way as usual perturbation sheme; to add

body

pressure distribution on the line Im{=1.

higher-order singularities and higher-order

The concept of this method is however inconsistent
and the first approximation is already complicated.
Thus it is not much recommendable to struggle with

the higher-order approximation.
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