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Abstract

This paper deals with a modified Kalman filter. An approaching horizon with a suitable

mitial condition will be considered, which is a little different from the classical Kalman

filter. It will be shown in this paper that the new filter with approaching horizons is not

only easv to compute but also possesses asymptotic stability properties. Thus this new esti-

matoris an excellent compromise between the ease of computation and the strict sense of

optimality. When this estimator is used for the standard problem, the error covariance

bound has been obtained. It is shown that the new estimator can be used as a suko-

ptimal estimator which has a stabiiity property. It is also demonstrated that the steady

state Kalman filter can be obtained from the moving horizon estimator by taking the

horizon parameter as infinity.

1. Introduction

The Kalman filter is not only a breakthrough
in control theories but also has been extensively
used in applications. It was developed first by
Kalman [1,2] and is still being investigated by
many researcher because of its importance [4].
The Kalman filter can be applied to discrete
systems [2] and also to continuous systems [1].
In this paper discrete systems will be considered.
The linear discrete stochatic systems with white
noises are represented by

zE+D)=A@z@) +B@Ow @), z@) =2 (L1)

y(@)=C@HzGE) +v{) (1.2)
where z(i) ¢éR", measurements y(i) eR?, and state
noise w(;) and measurement noise v(:) are inde-
pendent Gaussian processes with following
conditions:

EzGo=z({) E(z(io) — 2 () (o) —2 () =Fo

Ew(@)v () =Ez(io)w () =Ez(G)o(()=0 (1.3)

* E®A AEAR Tk FHUMET®H BaE
* EEA : AEk Ik FHmEE IR 3
o B Ak KEBh BELTEY N
S H3F 19804 64 28

Ew(&)=Ev()=0, Ew(@)w’ (J)
=Q()d, Ev(i)v (J)=R({)d:

It is well known that the conditiona! expecta-
tion is the best estimate, When the measureme-
nts {v(j), 7<<j<1i) are known, the Lest estimate
x(i—1) is given by

E@GE+1D)y(5),4<;<d) (1.4
The best estimate of (1.4) for the systems (1.1)
—(1.2) with conditions (1.3) is the
Kalman filman filter and is given by

2E+1D) =A@ 2@ +AG@)P(,:)C’ (7)

[CEHPEHCE+RETHv@ ~CEEED,

20y =2(i0) (1.5)
where P (i, i)&covariance (£(:)—2(G))=E(2()
—z(1)) (2()—=x()) is obtained from

P, i D=AGOP, DA G —AR

P(5,DC @O CHPG,HC @) +RE)
CEHPG,HA G FBHQGD B &), (1.6)
with P(j, )=F.. The Kalman filter prchiem is

so -called

dual to the deterministic quadratic rezulator

problem [3]. While the terminal time 1is fixed

in standard regulator problems [3], the rerading

terminal horizon and its have

good propert:
continuous
[7,12,13], and

rececing

been studied in recent papers for
systems [5,6], discrete systems
systems [8]. The

delayed horizom
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concept is applied to a deterministic version of
the estimation problem for continuous systems
[5]. This paper deals with a filtering  problem
for linear stochastic systems with approaching
horizons. Conditions are derived under which
systems are asymptotically stable.

2. Preliminary Results

Let the state transition matrix @(s, j),i<j, of
the system (1.1) be defined by
q)(i,j)z[A(i—l)A(i—Z)---A(j) for iz j+1 @1
I for i=j.
‘The controllability and observability of systems
are defined as follows.
Definition. The pair{A(:), B(z)} is said to be unif-
ormly completely controllable, if for some posi-
tive integer [.>>1 the following conditions hold:
1) a I<W(,i+)<a.l for all { (2.2)
@) NoE N <as(@i—j) for all 7, (2,3)
where the controllability matrix W(i, j),7<j, is
defined by

W, ) =306, b+ DB®B (B0’ G,k +1),

(2.4)

<, and a; are positive constants, and a;( - ) maps
R into R and is bounded on bounded intervals.
Definition: The pair {A(),C(:)} is said to be
. uniformly completely observable, if for some po-
sitive integer [,>>1 the following conditions hold:
(1) a<M@GE—1ei)<asl for all ; (2.5)
(2) The same as in (2.3) (2.5)
where «, and «, are positive constants, and the

observability matrix M(i, j),i<j, is defined by

MG, 5 =§}<D' (b, DHC" ()C (k)@ (%, 7) (2.6)

As a consequence of uniform complete contro-
1lability and observability there exist positive
constants as,ar,as, and a, such that

HAD ! Zas, AT @D Zay,

HB@O | i<as, CEII<as 2.7
for all 7. The invariance of the uniform observ-
ability of the system (1.1)—(l.2) is stated in
the next theorem. Let I=max (l.,/Z)

Theorem 2.1 If {A(:),C(:)} is uniformly com-

BRBEGE B20% B 75 1980F TH

pletely observable, then {A(D)+F@E)C3E),C(H)) is
uniformly éompletely observable provided | | F(Z)
1<a1s for some positive constant a,.

The dual result of Theorem 2.1is well known
9,13] and the proof of Theorem 2.1 can be
carried out similarly.

3. Filter with Approaching Horizon

It is a very basic concept that the state can
not be measurable for filtering problems. But
the initial state’s mean and covariance are
assumed to be known for the standard Kalman
filter as given in (1.3), which is unreasonable.
It is more realistic to assume that F, is sufficie-
ntly large or even infinite, if the initial state is
not known. There are many requirements for
filters to have good properties. Filter gains in
(1.5) must be constant for constant linear
systems in order to give easy implementation
and the computation of the gain must be easy. In
addition filters must possess stability properties
and robustness. In order to satisfy some of these
properties a steady state filter has been suggested
by assuming #,==—oc, whose gain is constant but
its computation of the gain is rather difficult. It
is well known concept that the performance
index like (1.4) must be chosen in such ways
that the resulting filter satisfies as many requi-
rements as possible. It is, of course, not possible
to include above requirements explicitly in the
performance index. Since solutlons of time-
invariant systems are invariant on time shift, we
use this property to define a moving criterion

E(zG+1Diy(j), i—N<j<i) G.D
The measurements on [i—N, 7] are only used
for the estimator of x(2+1). The measurements
on [f,, i —N—17 are discarded and instead

E(z(i—N)—2(—N)

(z(i—N) —u\%(i-—N))'=F(i—N) 3.2)
is assumed. The solution of the above estimation
problem is given in the next theorem.

Theorem 3.1 The best estimate z(z+1) of (3.1)
with the condition (3.2) is given by

2E+D=A@D2E) +ADHPE-N.HC' D
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[CEPE—N,HC E+R3E)]?
(y@—-C@2@), 3.3
where P(i—N, i) is obtained from (1.6) by
replacing j by i—~Nand P(;—N, i—N)=F({—N).
The compution of matrix P(i— N.%) is easy since
it is computed over a finite time interval.
Especially for time-invariant systems the estima-
tor is very simple. For time-invariant systems,
matrices A4(), B(),C(#),Q(:),R(:), and F(i) are
all assumed to be constant. The filter for time-
invariant systems is given as follows:
2E+1D)=A2E) FAP(N)C
[CP(N)C'+R] M (y()—C2())
where P(N) is obtained by
PGE+1)=AP(EA —APGC (CPHC'+R)
CP(i)A’+BOB’, P(O)=F. (3.6)
It is the constant matrices in (3.5) that char-
acterize the estimator (3.5). Although the esti-
mator (3.3)—(3.5) is easy,
question, which is most important. We will show

(3.5)

its stability is in

in the next theorem that the estimator is asympt-
otically stable with large values of the matrix F.
Theorem 3.2. (a) Assume
0€Q (D <anl, apI<RE)<a,l 3.7
for all . If the pair {A(),C()} is uniformly
completely observable, B(i) is bounded as in
{2.7), and F(i) satisfies
—FE+1D+ADFODAGO+ADFEHC G)
[COFOC @O+RGIICOFDHA @
+B()Q ) B’ (1) <0, (3.8)
then for any fixed N with [,+1<<N<c the
estimator (3.3) is uniformly asymptotically stable.
{b) Assume
a3, IQG) <anl, apl<R(E)<ail (3.9
for all . If the pairs {A4(G).B#)} and (A®),
C(z)} are uniformly completely controllable and
observable respectively and F(:) satisfies (3.8),
then for any fixed N with [+1<N<leo the esti-
mator (3.3) is uniformly asymptotically stable.
The proof of Theorem 3.2 will be given in
Appendix II. For time-invariant systems the
relation (3.8) is given by
—F+AFA + AFC'[CFC'+ R]™*
CFA’+BOB <0 (3.10)
It is noted that the relation (3.8) implies that

F()>P 1) for initial conditions F (i) =P (Ze,70)
where P (is,7) is given in (1.6). For time-invariant
systems, F of (3.10) implies F>P,where P, is the
solution of algebraic matrix Riccati equation.
When the matrix F() in Theorem 3.1 is assumed
to be sufficiently large, i.e., F~!'(:)—0, we have
more easily computable estimators. Let K(j,7)=
P-'(4,7). The following matrix identity is used
I-Y(ZY +X)? Z=(I+Y'X1Z2)! (3.1
whenever the inverses exist. The equation (1.6)
can be transformed to
K(,it)=P'(i+tD={AG K (1) A (D
—~AGK(§,HC HICHK*(4,DC @)
+ROICOK (G, DHA ()
+B@HQ@HB (@)}
=AY O K'G,O+DI-C G (CHK!
(G, HC O +RE)CEHK?(4,1)]
+ATGOBHOR@HB DA T@H)TATE
=A'O{KG,DIHC GO RIOK?(,H ]
+A@BEHR@HB HA (D} PATD
=AW KG,H+C @DRTEHCE]
I+ A @HBHREB (A (@
[K(,D+C HRITGHCHI A G (B.12)
=A@ [KG,)+C ORIMEODCEHIAE—-A
[K(j,D)+C ER'DCHDIA*@OBHHGI
+H @B @)A1 E) (K(G,)+C @R
COHAT@OBGHHGIH GB @O A (D
[K(,)+C @HRITEHCEIAE) (3.13)
where Q(i)=H'(:)H(i) for some H(7).
The filter gain of (1.5) can be transformed to
A@PG,HC HICEHPG,HCEH+REH]T
=A@ K'(,)C OICEHK*(,)C @ +R(E)]?
=A@ K (§,H)C EHI+R*'GCHK!
(L, HC@GHIRE)
=ADOQK*'(7,)CHI-RE+CEHK™?
G, DC @) TCHK(4,HC @ IR ()
=AQK'G,HUI-CEHRO+CHK™?
(LDCE)TCHK(4,9)IC G R )
=A@K!'(,)[I+C HR''GCEK™!
GDICOR@D
=A@ KG,D+C HRYGOCEIC HRIEG).
(3.14)
From (3.13)—(8.14) the moving horizon estimator
and its stability property can be obtained when

F({{) becomes infinite.
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Theorem 3.3 When F(i) becomes infinite at
each time i, the best estimator of (3.3) becomes
2GHD=A@L2E+AGKG—N—-1,7)
CHOR'E (y@D (@) —-CH2E)
where K(;—N-1,7) is obtained from
KRG+ D=A"""DK G, DA @) —AG)
K{¢DAT@BOHGUI+H ()
BGHATHORG,HAOBOHG]
H@HB @A HDEKG,)AE+C G+1)
RGHDCE+D, KRG )=0,j<i  (3.16)
If the matrices Q(:) and R() satisfy (3.7), the
pair {A(),C())} is uniformly completely observ-
able, and B(:) is bounded as in (2.7), then for
any fixed N with [,+1<N<o the estimator
(8.15) is uniformly asymptotically stable. Moreov-
er if the matrices Qi) and R(Y) satisfy (8.9),
and the pairs {A(), B()} and {A@®), C(E)} are
uniformly completely controllable and observable
respectively, then for any fixed N with [+1<N

(3.15)

<o the estimator (3.15) is uniformly asymptot-
ically stable.

The equations (3.15) and (3.16) have been
obtained from (3.3), (3.13), and (3.14) by rep-
lacing [K(j,5)+C GR'CHI by K(j,i). The
rest of the proof of the theorem will be given in
Appendix IIL. It is noted that the computation
of the matrix K(i—N,i) is easy since it is carried
over a finite interval. For time invariant systems
the estimator (3.15) is given by

2G+1)=A2GE) + AR (N+1)C'R?
(y(0)—C2(G))
where K (N-+1) is obtained from
RG+D=A"R@BA ' —-AKHA™
BH{I+H'B' A 'K A'BH] 'H'B A’"!
xK@A*+CRY, K(0)=0 (3.18)
The results in Theorems 3.2 and 3.3 can be
obtained from the following hasic properties. The

3.17)

proof of Lemma 3.1 will be given in Appendix I.
Lemma 3.1. (a) If the matrix F(i) satisfies
(3.8) then the solution of (1.6) with P(j, j)=F(j)
satisfies the following order relation:
P(j1,)) <P i) for j1<je<i (3.19)
(b) The solution matrix of (3.16) satisfies the
following order relation

K (1, ) 2K (o i) for ji<5:<i (3.20)

EFMEE H20% F 7Y 19804 7H

(c) If Q) and R(:) satisfy (3.7), {A(:),C()} is
uniformly completely observable, B(z) is bounded
as in (2.7), and F(:) satisfies the relation (3.8),

then for any fixed N with [,+1<N<oo there

exist positive constants a,; and a,, such that

a ;s I<P(i—N,i)(or K(i—N—1,i))<a;. I (3.21)
(d) If Q) and R(:) satisfy (3.9), {A(:),B()}
and {A(:),C(:)} are uniformly completely contr-
ollable and observable respectively, and F(i)
satisfies (3.8), then for any fixed N with {+1<
N< oo there exist positive constants a;; and ae
such that :

a I<P({—N,i)(or K(—N—1,i))<a;el (3.22)

The estimator (3.3) is the best estimator for
(3.1), (3.2) and (3.8) and the estimator (3.15)
is optimal for the (3.1),(3.2) and F(z)=o. Even
though they are optimal in their own rights, it
will be very interesting to compare with the
standard Kalman filter problem. The covariance
of the error e(f)=x({)—2£(:) will be stated as
follows,

Theorem 3.4. If the filter (3.3) (the filter
(3.15) respectively) is used, instead of the Kalman
filter (1.5) for the standard problem(1.1),(1.2),
and (1.3) then the error covariance has the
following bounds.

B (iy,i)<E[eiy)—e(i1))(e(G)— () ]
P(i1—N,i1) +@p(i1,20)
< (Fo—P(iy—N,i0))0p (f1i0)
(K (4, —N—1,1,) +0x(¢1,70)

(Fo—K ' (ip—N—1,71)) (@x (i1, 70)7€D.)
where P(io,i;) is obtained from (1.6) with the
initial condition P(ie, o) =Fs, P({—N,i) from(1.6)
with (3.8), K(i—N=1,i) from (3.16), ©s(i,i)
is the state transition matrix of {A()—A()
PG—N,DC(DHICEPE-N,IC (@) +R(E)]CE)],
and ®x(i,7,) is the state transition matrix of
[AG)—ADKGE—N-1,)C (R (HCE))

The proof of the Theorem 3.4 is given in
Appendix IV. Since @p(i1,70) and @x(is,70)g0 to
zero as i, goes to infinity from Theorems 3.2
and 3.3, the steady state error covariance diffe-
rence from the steady state Kalman filter is no
more than P(i;—N,i)—P(i0,i) as 4 goes to
infinity. Since this difference becomes zero for
N=c0, the estimators (3.3) and (3.15) can be
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considered suboptimal estimators for the standard
Kalman filter. For time invariant systems the
steady state error covariance difference is P(N)
(orR-'(N+1))—P, where P, is the steady state
solution of (1.6). P(N) (orR-*(N-+1)) goes to
P, as N goes to infinity.

4. Conclusion

The Kalman filter has been applied to so many
fields by so many researchers. Because - of its
importance, properties and modifications of the
filter need to be investigated thoroughly. A
modified criterion (3.1) and (3.2) is introduced
and the optimal estimator for this problem 1is
systems designs,

given in (3.3). For control

several properties including stability, easy
computation, and ease of implementation need to
be considered along with the optimality. It is not
‘which

renders required necessary properties. Therefore

possible to define a criterion like (1.4)

it is a usual practice to decide a form of criterion
first and then check whether the resulting
system has required properties. The optimal
estimators (3.3) and (3.15) are shown to have
stability properties. The computation of the filter
gain is easy since the computation is carried over
the finite-time intervals. For time-invariant
systems these filters are easily implemented since
its gains are constants. Thus the optimal crit
erion (3.1) and (3.2) with certain constraints on
F, which renders the estimators (3.3) and (3.15),
is an excellent compromise to add better prope-
rties in the filters but to sacrifice a little for the
strict sense of optimality. For those problems
which require the standard approaches, (1.1)
through (1.4), the estimators (3.3) and (3.15)

can be used as suboptimal filters.

Appendix

1. Proof of Lemma 3.1.

(2) Consider two matrix difference equations

PG+ 1)=AGE)P.(D)A () —AGE)P.()C () (CE)P,
@OCETR@)ICEH PG A (D) +BEQ(DHB(2)
where P(ig)=F:(io)

— 65—

P(i+1)=AG)P:(0) A’ () — AW P,()C (1) (C(7)
Po(i)C’ (i) + R())ICE) Po() A'(2) + B()Q:(i) B' (i)
where P,(i,)=F:(iy). It is known that P,(G)>P,
(£), if Fi(i)>F:(3y) and Q,(:)=Q.(:), and P,(s)
>P,(i) if Qui)=Qu(i) and Fi(i)=F,(:). From
above it follows that P(j,,7)<F(:) and thus P(j,,
J)SF(i)=P(jz272),
P, )<P(j2i).

(b) The equation (3.16) can be ‘obtained from
(1.6) by replacing A(:),C(:3,B(:),Q(), and
P(j,i) with A"3(5), RV:GH (D)B' (1)A (), C
(i+1), R'(:+1), and R(4,i) respectively. It is
true that K(4,,7)>0 and thus K (j,,52)>0=K(j.,
J2). The relation (3.20) follows from this and
the properties of matrix Riccati equations ment-

which in return implies

ioned in (a).

(¢c) The upper bounds of P(i—N—:) and K (;--
N—1,7) are obvious from (2.3), (2.7), and sum-
mation over a finite interval. The lower bounds
can also be obtained in such similar methods as
dual problems of regulators [7,13,11].

(d) The case of a finite time N is almost.same
as in (c). For the case of N=oo P(i—N,i) is
given in [10]. Since K(j,7) is derived from a
cerived from a certain estimation problem as
shown in (b), the property of K(i—N—1,:)
follows also from {10].

2. Proof of Theorem 3.2.

We only sketch the proof. The error vector of
the estimator (3.3) is given by
e(i+1)=LAGE)—AG) P(E—N,i)C () (CGE)
P(E—N,)C (D) +R(i)) 1 C(E)Ie(s).
=A(i)[I—P"(i—N,i)C'(i)R“(z’)C(i)]e(i)
(A-1)
where P(i—N,i)=C’'({)R-'(:)C(i) + P-'(i—N,i).
Consider a Lyapunov function for (A-1),
Vie(),i)=¢' ({) A" (i—1)

BGi—-N—1, i—1DA(i—~De(s) (A-2)
which is a ture Lyapunov function from Lemma
3.1 (c,d) and (2.7).
shown that

Vie(i+1),i+1)— Vie(ds),i0) <--amsle(io) |2 (A-3)
for i>I+1, from which follows the asymptotic
stability of the system (A-1).

From Lemma it can be
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3. Proof of Theorem 3.3.

We only sketch the proof. The error vector of
the stimator (3.15) is given by
e(i+1)=A(E) [I—-K(i—N-1,7)

C' (@D R1()C(E)]e(d) (A-4)
Consider a Lyapunov function
Vie(i),i)=e (i) A’ (i—1) :
K(i—N—-2,i—1)A'(i—1)e(?). (A-5)

Then from Lemma 3.1 (b,c,d) it can be shown
that the relation like (A-3) is satisfied.

4. Proof of Theorem 3.4.

The lower bound is obvious. Let L(:)=A()P
(i—N,)C @(CEPGE—N,DNC (Z)+R()). Then
the error covariance of the estimator for arbitr-
ary gamn L(3) is given by '

S(ioyi+1)=(A() ~LE)C())S (o, 1) (A(D)
—L(#C()) + BHRQEB'(7) ’
+LERGE)L (1) (A-6)

where S(i0,i0)=F.. It can easily be shown that
P(i—N,i) satisfies
P(i—N,i+1)=(AGE)—LGE)CE)P(E—N,i)
(A —LEHCE) +BERGEYB (1)
+L(£)RG)L’ (i) (A-7)
Let 7T(i)=8(i0,s)—P(i~N—1,7). Then we have
TGE+D=(AE=LECE)(TE) —T(E))
(A@—LEC®) (A-8)
where T(i)=P(i—N,i)—P(i—N—1,i)=>0 and
T(io)=Fo—P(iy—N,i,), from which follows The-
orem 3.4 for the case of the case of the estimator
(3.3). For the estimator (3.15) let L(#)=A®)
R(i—N-1,)C’' )R (7). Then the relation(A-6)
holds and K-*(i—N,) satisfies the relation(A-7)
wtih P(i—N,i) replaced by K-'(;—N,i). Let
TE)=S8(t0,i)—~K (i—N—1, i). Then the rela-
tion (A-8) holds with 7(i)=K"'(i—N,i)—K™*
(i—N—1,7). Since it can be shown that T(:)=0
it follows that Theorem 3.4 holds for the estim-
ator (3.15). This completes the proofs of Appe-
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