COMPACTNESS IN PAIRWISE SKOROKHOD CONVERGENT TOPOLOGY

  • Published : 1979.07.01

Abstract

근래(近來) Skorokhod는 확률론(確率論)의 극한문제(極限問題)와 관련(關聯)하여 모든 불연속함수공간(不連續函數空間)에 관(關)한 위상(位相)을 정의(定義)하였다. 본(本) 논문(論文)에서는 Skorokhod 수렴위상(收斂位相)을 쌍위상(雙位相)(bitopology)형(型)으로 일반화(一般化)하고 잘 알려져 있는 여러위상(位相)과 비교(比較)하여 다음과 같은 결과(結果)를 새로 얻었다. (정리(定理) 2-11); 공간(空間) X와 Y가 완비준거이가분공간(完備準距離可分空間) (Completdy quasi-metric separable space)이라면 쌍개수렴위상(雙槪收斂位相)(pairwise almost convergent topology)는 Skorokhod 쌍수렴위상(雙收斂位相) 보다 약(弱)하다. 그리고 (정리(定理) 2-12); 쌍(雙) graph 위상(位相)은 Skorokhod $J_1$-수렴위상(收斂位相)과 일치(一致)한다. 끝으로 주정리(主定理)인 (정리(定理( 3-1)과 (정리(定理) 3-2)에서 Skorokhod 쌍수렴위상(雙收斂位相)의 Compact성(性)에 관(關)한 필요충분조건(必要充分條件)을 밝혔다.

Keywords