A NOTE ON SMOOTH AFFINE VARIETIES

KWANG-HO, SO

ABSTRACT

本 論文에서는 smooth Affine variety가 微分可能 多樣體임을 보임으로써 代數 幾何學이 多樣體理論과 關聯됨을 論하였다.

§ 1 에서는 affine variety의 次元과 affine variety의 接空間에 對한 定義와 그에關聯되 性質들을 論하였고

§ 2 에서는 simple point와 局所 媒介變數, 그리고 θ_* 에서의 有理函數의 Taylor 級數 等을 利用하여 主定理(定理9)를 證明하였다.

Introduction

In this note, we shall prove that a smooth affine variety is a differentiable manifold (Theorem 9).

This shows that algebraic geometry is connected with theory of manifolds.

In $\S I$, we shall define the following:

- (i) dimensions of the affine variety
- (ii) tangent space of the affine variety at a point in the variety.

Also, we shall prove some propesties about tangent space (Proposition 3 and 4). In §2, we shall define the following:

- (i) simple points
- (ii) local parameters
- (iii) Taylor series of a rational function in θ_x .

The above things ie described to prove Theorem 9.

In order to make this note we refer the books [1] and [2].

§ 1. Tangent spaces

Let k be an algebraically closed field, and let us put $T = (T_1, \dots, T_n)$. For an algebraic variety X is given by a system of equations

$$F_1(T) = 0, \dots, F_m(T) = 0,$$

we put such that

 A^n = the n-dimensional affine space over k.

k[X] = the coordinate ring of X.

$$0 l_x = (F_1, \dots, F_m) \subset k[T].$$

Then, $X \subset A^n$. As is well known, for an irreducible subvariety Y of X, k[Y] is a prime ideal of k[x].

Similarly, for each $x \equiv X$ there exists a prime ideal $P = M_x = \{f \equiv k[X] \mid f(x) = 0\}$, $k[X]_P = \theta_x$ is the local ring of the point x. For a point $x \equiv X$ we assume that the system of coordinates in A^n is chosen so that $x = (0, \dots, 0) = 0$. A line $L \subseteq A^n$ passing through O is $L = \{ta \mid t \equiv k\}$, where $a = \{a_1, \dots, a_n\}$ is a fixed point other than O.

DEFINITION 1 The intersection multiplicity at a point O of a line L and an algebraic variety X is the multiplicity of the root t=0 in the polynomial f(t)=g.c.d. ($F_1(ta)$, $F_n(ta)$, where g.c.d. = greatest common divisor.

If the polynomials $F_i(ta)$ vanish identically, then the intersection multiplicity is taken to be $+\infty$.

DEFINITION 2 A line L touches the variety X at O if their intersection multiplicity at this point is greater than 1. The locus of points on lines touching X at $x \in X$ is called the tangent space at the point x, which is denoted by Θ_x (or Θ_x , x).

PROPOSITION 3 In the same notations as above, the equations of the tangent space Θ_0 are

$$L_1(a) = \cdots = L_m(a) = 0$$

where $L_i(i=1,\dots,m)$ is the linear part of F_i .

PROOF For $i=1,\dots,m$, since $F_i(\theta)=0$ the free terms of all the polynomials $F_i(T)$ are zero, we put for $i=1,\dots,m$ such that $F_i=L_i+G_i$,

where L_i is the linear part of F_i and G_i consists of terms of degree at least 2 in F_i . In this case it follows that $F_i(at) = tL_i(a) + G_i(at)$.

Since the intersection multiplicity of $L=\{ta\mid t \in k\}$ and X is at least 2, $F_i(at)$ must be divided by t^2 . This equivalent to the equations $L_I(a)=\cdots=L_n(a)=0$.

For $F(T) \equiv k[X]$, we can define a regular function $F: X \to k$ such that for each $x \equiv X$ F(x). For each $x \equiv X$, let F_1 be the linear part of F and we denote this by $d_x F$. Then, for F(T) and G(T) in k[X] it follows that.

- (i) $d_x(F+G)=d_xF+d_xG$
- (ii) $d_x(F \cdot G) = d_x F \cdot G(x) + F(x) \cdot d_x G$

Let θ_{a}^{*} be the dual space of θ_{a} .

PROPOSITION 4 $M_x/(M_x)^2$ is ismorphic to θ_x^* under the homomorphism d_x .

PROOF Recall that $M_x = \{ f \in \mathbb{A}[X] \mid f(x) = 0 \}$. Thus Im $(d_x: M_x \rightarrow \theta_x^*) = \theta_x^*$ is clear. We assume that $d_x g = 0$, where $g \in M_x$. Since $\mathfrak{A}_x = (F_1, \dots, F_m)$ and $d_x g = 0$ on θ_x^* by our assumption, $d_x g$ is a linear combination of $d_x F_1, \dots$, and $d_x F_m$, that is,

$$d_xg = \lambda_1 d_x F_1 + \cdots + \lambda_m d_x F_m (\lambda_i \in k).$$

We put $G_1 = g - (\lambda_1 F_1 + \dots + \lambda_m F_m)$. Then G_1 does not contain any terms of degree 0 or 1 in T_1, \dots, T_n .

In this case $G_1 \mid X = g$ and $g \in (t_1, \dots, t_n)^2$ where $t_i = T_i \mid X$ for $i = 1, \dots, n$ (Note that $(t_1, \dots, t_n) = m_x$ in this case).

As we well know, the dimension of tangent space at $x \in X$ is invariant under some isomorphisms.

§ 2. Simple points

With the notations in §1, k(X) is the quotient field of the integral domain k(X). Then, the dimension of X (dim X) is the transcendence degree of k(X) over k.

DEFINITION 5 Let X be an affine variety. A point $x \in X$ is said to be simple if $\dim \Theta_x = \dim X$, where $\dim \Theta_x$ is the dimension of the vector space Θ_x over k. A variety X is called a smooth variety if all its points are simple.

A point $x \in X$ is said to be singular if it is not simple.

DEFINITION 6 Functions $u_1, \dots, u_n \in \theta_n$ are called local parameters at $x \in X$ if $u_1 \in M_n$ and u_1, \dots, u_n form a base of the space $M_n/(M_n)^2$.

By the isomorphism d_x : $M_x \to M_x/(m_x)^2$, u_1, \dots, u_n form a system of local parameters if and only if the linear forms $d_x u_1, \dots, d_x u_n$ are linear independent on Θ_x . Since dim $\Theta_x = n$, the conditions of local parameters is equivalent to the fact that the equations

$$d_x u_1 = \cdots d_x u_n = 0$$

have only the trivial solution in θ_{\star} .

PROPOSITION 7 The system of local parameters generate the maximal ideal M_x of the local ring θ_x .

PROOF We have seen that $M_x = (t_1, \dots, t_N)$ where $X \subset A^N$ and $x = (0, \dots, 0) \in A^N$. If we assume that u_1, \dots, u_n are local parameters at x, then we have to claim that $t_i \in (u_1, \dots, u_n)$ $(i = 1, \dots, N)$. At first, by induction on N - i we shall prove that $t_i \in (u_1, \dots, u_n, t_1, \dots, t_{i-1})$.

Suppose that $M_x=(u_1, \dots, u_n, t_1, \dots, t_N)=(u_1, \dots, u_n, t_1, \dots, t_i)$. Then, since u_1, \dots, u_n are base of $M_x/(m_x)^2$

$$t_i = \sum_{j=1}^n a_j u_j(m_x^2), \ a_j \in k.$$

But, every element of M_{x^2} is of the form

$$\mu_1 u_1 + \cdots + \mu_n u_n + \mu_1' t_1 + \cdots + \mu_i' t_i (\mu_i \mu_i' \epsilon m_x)$$

and thus

$$t_i = \sum_{j=1}^n a_j \ u_j + \sum_{j=1}^n \mu_j \ u_j + \sum_{j=1}^i \mu_j' t_j.$$

Therefore we have

$$(1-\mu_{i}')t_{i} = \sum_{j=1}^{n} a_{j} u_{j} + \sum_{j=1}^{i-1} \mu_{j}'t_{j} \in (u_{1}, \dots, u_{n}, t_{i}, \dots, t_{i-1}).$$

Since $\mu_i' \in m_x$, $1 - \mu_i \notin m_x$, and thus $(1 - \mu_i')^{-1} \in \theta_x$.

Therefore, in Θ_x $t_i \in (u_1, \dots, u_n, t_1, \dots, t_{i-1})$. It is easily prove that $t_N \in (u_1, \dots, u_n, t_1, \dots, t_{N-1})$.

It is clear that x is a simple point if and only if dim $X=\dim (m_x/m_x^2)$. In general, the dimension of a variety X at x can be defined as the smallest integer t for which there is t functions $u_1, \dots, u_r \in m_x$ such that the set determined by the equations $u_1 = \dots = u_r = 0$ consists in a neighborhood of x. In this case $(u_1, \dots, u_r) \supseteq M_x^i$ for some i > 0 by Hilbert's Nullstellensatz.

Let k([T]) be the ring of formal power series in variables $T = (T_1, \dots, T_n)$. Then each $\phi \in k([T])$ can be represented by

$$\phi = F_0 + F_1 + F_2 + \cdots$$

where $F_i \in k[T]$ is a form of degree i,

DEFINITION 8 A formal power series ϕ is called a Taylor series of the function $f \in \theta_x$ if for all $l \ge 0$

$$f-Se(u_1, \dots, u_n) \in M_x^{i+1}, Se = \sum_{i=0}^{i} F_i.$$

Then, if x is a simple point there exists only one Taylor series of the function $f \in \theta_x$. Therefore, there is a monomorphism

$$\tau \colon \theta_x \to k([T]),$$

that is the mapping τ is an isomorphic embedding of the local ring θ_x in the ring of formal power series $k(\lceil T \rceil)$.

Furthermore, by using this statements we can prove that there is only one component of X papping through a simple point x, where a component is an irreducible subvariety of X containing x.

THFOREM 9 Let k be the field of real or complex numbers and let X be a smooth affine variety. Then the formal Taylor series of functions $f \in \theta_x$ converge for small values T_1, \dots, T_n .

Therefore X is a differentiable manifold.

PROOF Let $\mathfrak{A}_x = (F_1, \dots, F_m)$, $X \subset A^n$ and $\dim X = n$. If $x \in X$ is a simple point of X then $\dim \Theta_x = n$ and Θ_x is determined by the equations

$$d_x F_1 = \sum_{i=1}^{N} \left(\frac{\partial F_1}{\partial T_i} \right) (x) (T_i - x_i) = 0, \dots, d_x F_m = \sum_{i=1}^{N} \left(\frac{\partial F_m}{\partial T_i} \right) (x) (T_i - x_i) = 0$$

Therefore the rank of matrix

$$\left(\frac{\partial F_i}{\partial T_i}(x)\right)$$
 $(i=1,\dots, m, j=1,\dots, N)$

is N-n. Thus we may assume that

$$\left| \frac{\partial F_i}{\partial T_i}(x) \right| \neq 0 \ (i=1,\dots, N-n, j=n+1,\dots, n+m) \ \dots (1)$$

Let x be the origin of coordinates. Then t_1, \dots, t_n form a system of local parameters of x. Let X' be the set of components passing through x of the variety which is determined by the equations

$$F_1=0,\cdots, F_{N-n}=0 \ (N-n\leq m). \cdots (2)$$

Then, we can prove that X'=X. So, we may take X as neighborhood of x by the equations of (2) with (1) holding.

By the implicit function theorem there exists a system of power series $\phi_1, \dots, \phi_{N-n}$ in the n-variables T_1, \dots, T_n and $\epsilon > 0$ such that $\phi_i(T_1, \dots, T_n)$ converges for all T_i with $|T_i| < \epsilon$ and

where the coefficients of $\phi_1, \dots, \phi_{N-n}$ are uniquely determined and $i=1, \dots, N-n$.

By (2) the formal power series $\tau(t_{n+1}), \dots, \tau(t_N)$ (t_1, \dots, t_n) are a system of local

parameters) satisfy (3). Therefore $j=1,\dots,N-n$ $\phi_j=\tau(t_{n+j})$

and $\tau(t_{n+i})$ converges for $|T_i| < \varepsilon$ where $i=1,\dots,n$.

For each function $f \epsilon \theta_x$

$$f = p(t_1, \dots, t_N)/Q(t_1, \dots, t_N) Q(x) \neq 0$$

and

$$\tau(f) = p(\tau(t_1), \dots, \tau(t_N))/Q(\tau(t_1), \dots, \tau(t_N)).$$

Therefore the series $\tau(f)$ converge for $|T_j| < \varepsilon \ j = 1, \dots, n$. In general, the series $\tau(f)$ has a positive radius of convergence for any choice of local parameters. Thus, the implicit function theorem says the following.

- (i) there are convergent power series $\phi_1, \dots, \phi_{N-n}$
- (ii) for some η and for any point $(t_1, \dots, t_N) \in X$ with $|t_i| < \eta$, $t_{n+i} = \phi_i(t_1, \dots, t_n)$ $(i=1, \dots, N-n)$ (see (3))

It follows that the mapping

$$(t_1, \dots, t_N) \longmapsto (t_1, \dots, t_n)$$

carries the set $(t_1, \dots, t_N) \in X$, $|t_i| < \eta$ $(i=1, \dots, n)$, one-to-one and bicontinuously onto a domain of the *n*-dimensional space.

(Note:
$$(t_1, \dots, t_N) = (t_1, \dots, t_n, \phi_1(t_1, \dots, t_n), \dots, \phi_{N-n}(t_1, \dots, t_n))$$
 and $F(t_1, \dots, t_N) = 0$.

Therefore, each point $x \in X$ has an open neighborhood which is homeomorphic to an open subset in k^n .

That is, X is a differentiable manifold.

REFERENCES

- 1. I.G. Macdonald: Algebraic Geometry, W.A. Benjamin, INC. (1968)
- 2. I. B. Shafarevich: Basic Algebraic Geometry, Springer-Verlag New York (1974).
- 3. A. Weil. Foundations of Algebrai Geometry, New York (1946)

Jeonbug National University.