Study on The Distribution of Applied 32P into Different Forms of P Compounds in the Soils During Incubation

논·밭 토양(土壤)에 시용(柴用)된 32P의 토양중(土壤中) 상이(相異)한 인산화합물(燐酸化合物)로의 분배(分配)에 관(關)한 연구(硏究)

  • Published : 1979.12.25

Abstract

The present work was carried out to study the fate of applied phosphorus labelled with $^{32}P$ and its availability to plants in soils subjected to different management practices. The results can be summarized as follows (Table 3): 1. The applied phosphorus was transformed into different phosphorus compounds in the soils depending upon the management practices and soil characteristics. 2. In the flooded paddy soil (pH 5.8) added P after one week of incubation was transformed into various fractions, the order of abundance being: Al-P> Ca-P$${\sim_\sim}$$Fe-P> Org.-P. After two weeks the order changed to: Fe-P> Al-P> Ca-P> Org.-P. The amounts of the Fe-P and Al-P fractions were found to increase from the second week of incubation whereas a decrease in Ca-P was noticed with the organic-P remaining constant. The amount of available P decreased from the first to the third week of incubation, but increased thereafter. 3. In the volcanic ash soil a major proportion of the applied phosphorus was found in the Fe-P fraction during the whole experimental period. The interconversions of the $^{32}P$ among the different phosphate fractions was not as evident as in the case of flooded rice soil. The recovery of applied P was low and remained constant throughout the incubation period. 4. In the upland soils relatively more of the applied phosphorus was found in the Ca-P fraction as compared with those of the other soils. As in the flooded paddy soil $^{32}P$ in the Ca-P fraction decreased with increasing incubation time, whereas in the Fe-P fraction it increased with time. The recovery of added phosphate as available P followed different patterns for the cultivated and the uncultivated soils. In the cultivated soils lit was relatively high and remained nearly constant during the whole incubation period. In the uncultivated soil on the other hand, it was high at the earlier time of incubation, but decreased with incubation time.

$^{32}P$로 표식(標識)된 $Ca(H_2P^*O_4)_2{\cdot}H_2O$를 사용(使用)해서 모재(母材)와 이용(利用) 형태(形態)가 상이(相異)한 토양(土壤)에 시용(施用)된 인산(燐酸)의 행동(行動)을 파악(把握)하기 위(爲)하여 시용(施用) $^{32}P$$A{\ell}$-P, Fe-P, Ca-P, 및 유기인산(有機燐酸)으로의 분배(分配) 양상(樣狀)과 Lancuster법(法)으로 침출(浸出)되는 $^{32}P$의 경시적(經時的) 변동상황(變動狀況)을 조사(調査)했던 결과(結果)를 용약(要約)하면 다음과 같다. 1) 하성(河成) 충적모재(沖積母材)에서 발달(發達)한 논 토양(土壤)(풍건토(風乾土), pH5.8 유효인산(有效燐酸) 100ppm에 인산(燐酸)을 시용(施用)하고 담수정온(湛水定溫)($25^{\circ}C$)하는 과정(過程)에서 초기(初期)(1~3주(週))에는 많은 부분(部分)의 시용인산(施用燐酸)이 $A{\ell}$-P*로 결합(結合) 하나 시간(時間)이 경과(經過)함에 따라 $A{\ell}$-P*와 Ca-P*로 결합(結合)됐든 인산중(燐酸中) 상당부분(相當部分)이 Fe-P*로 변환(變換) 되는것 같았다. 시용(施用)된 인산(燐酸)이 유기인산(有機燐酸)으로 되는 양(量)은 비교적(比較的) 적었고 그 양(量)은 경시적(經時的) 변동(變動)이 별로 없었으며, 유효인산(有效燐酸)으로 침출(浸出)되는 $^{32}P$양(量)은 담수초기(湛水初期)(1~3주(週))에는 시간(時間)의 경과(經過)에 따라 감소(減少) 했으나 그 뒤부터는 시간(時間)의 경과(經過)에 따라 증가(增加)하는 경향(傾向)이였다. 2) 화산회토(火山灰土)(pH, 5.2 유효인산(有效燐酸) 2.7ppm)에 인산(燐酸)을 시용(施用)하고 밭 상태(狀態)로 유지(維持)하면서 정온(定溫)한 경과(境過) 시용(施用)된 $^{32}P$는 Fe-P*에 특(特)히 많이 분배(分配) 됐으며 기간(時間)의 경과(經過)에 따른 각(各) 형태간(形態間)의 전환(轉換)은 별로 뚜렷하지 않았다. 특(特)히 이 토양(土壤)에서는 시용(施用) 인산(燐酸)의 유효인산(有效燐酸)으로의 침출양(浸出量)이 극(極)히 적었다. 3. 화강암풍화물(花崗岩風化物)을 모재(母材)로 하는 토양(土壤)의 경과(境過) 기경지(旣耕地)(pH5.2, 유효인산(有效燐酸) 4.8ppm) 또는 미경지(未耕地)(pH4.6, 유효인산(有效燐酸)은 7.3ppm)에 무관(無關)하게, 시용(施用) 인산(燐酸)은 초기(初期)(1~2주(週))에는 Ca-P에 많이 분배(分配) 됐지만 시간(時間)이 갈수록 Ca-P*와 $A{\ell}$-P는 줄고 Fe-P*가 증가(增加)하여, 무기인산(無機燐酸)의 형태간전환(形態間轉換)에 관(關)한 한답토양(限畓土壤)의 경우(鏡遇)와 유사(類似) 했다. 시용인산(施用燐酸)의 유효인산(有效燐酸)으로의 침출량(浸出量)은 두 토양(土壤) 공(共)히 많은 편(便)이였으며 경시적(經時的)으로 보면 기경지(旣耕地)의 경우(境遇)는 별로 변동(變動)이 없었으나 미경지(未耕地)에서는 시간(時間)이 경과(經過)와 함께 감소(減少)하는 경향(傾向)이 뚜렷했다.

Keywords