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Conditioned Galton-Watson Process on the Event (n+k£<T}
by Oh Jai Pil

In this paper, we study the conditioned limit laws on the events {#+i2<T<w} in Galton-
Watson process.

The notations and terminologies used in this paper follow those of [1].

We have conditioned the Galton-Watson process Z, on the event {#<T<w}, where T is
the extinction time. It is meaningful to condition on {#n+k<T<oo}, %k>0; namely, the
event that the process not extinct at time n+% but does eventually die out, and to
condition on {#n+k=T}, k>0; namely, the event that the process is extinct at time #-+k
and {Z,,,.,=0} for all »n, k.

As in [1] and [3], we have the following. When p,=0 and ¢=0,

lim P(Z,=j|n+k< T< o) =ﬂ[‘lr’+§{%{m—=b;(k)20 6}
n—so q

and (with m=1) we have

—13 Pn(l)j) .
where z,—lﬂ—P'(L o j=1.

We have the following proposition.
Proposition: If p,>0, and ¢>0, we have

() If m=1, then b;(k)=0 3
Gi) If m=1, then b,(k)=1 (€Y
(i) If m=1, then §;(k)=1 ()

Remark; This proposition is given in [1] without a detailed proof. We sketch the proof

of this proposition: (i) If m=1, then ¢=1 and f’(¢)=y=m=1, therefore from(l), we see
that

rP@Q=r'P(1)=Xn;=0, and z;[¢/—fi(0)]<oo,
so we get b;(k)=0. Summing for j (1) and (2), we can get (ii) and (ii).
Theorem 1. If p,>0, and ¢>0, we have

O It meel, by =g =53] @
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where b,=lim P(Z,=jln< T < o).



Proof. (i) The case m<], we can get in [1] easily. Now we consider the case m>1. Let
BIAS)=E(s%|n+k<T<o0)
=’§1 IP(Z.=f|n+k< T< )
¥, PZ=DL AU ~FOIs’
==l — (see (3] p. 1474
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Therefore by similar method as the case m<1, we get
3 ©=lim g3 =29 BUAD)] ®
(cf. [1] p.16-p.17).
From (9), comparing the coefficients of power expansion, we can get (6).
4D BOE)=E(®|n+k=T)
=)_§l SP(Z.=jin+k=T)
=y P, (LD =fi-1(0)]
=t ,~§1 P.(1, DLSi0)—fi-(0)]
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From (10), we get
() =1 6 _ Bls/il0)]1—B[sfi-1(0)]
POl SO =57 )= B ir0)] an
Comparing the coefficients of (11), we get (7).
Q.E.D.

Remark: From (2), we get the probabilistic interpretation of z,'s as
”’=7;(0—)6'i(,%?jr(55-§1 2L Fi(0) —fi-(0)]
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In [1], we can see the relation between the sequence {z;}, {v;} and {b;} and their» gener-

ating functions @(s), @(s) and B(s) as following.
If m%x1 and p,>0, then

__P(gs)
B()= - 20)) as
— P(s)



Moreover if m<1, then

.63(3)=1——QQ—((3—))~—

From these relations, we get the following results.
Theorem I. If m~1, p.>0, and ¢>0, then

€)) v 9@—Qlgf,(0)]
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Moreover, m<], then
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Giv) glm=~9"<1>uo

Proof. (i) From (9) and (13), we get
P(sq) —P(sq£,0)]

B === Fle/ (D]
and we get

g TI—fO)]
b == Blgf ()]

From (14) and (20), we get
BY(S)= Q(sg)—Qls¢f,(0)]

Q(g)—QLg/:(0)]

and we get

g TI—FO)]
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From (21), (23), we get (16).
(i) If m<1, from (9) and (15), we get

v QI (@]1=QLs]
B =01 7.05]

and we get

_wlAmM—1]
bi =5 7,(0]

From (24) and (14), we get
BD(s) PLsfi (0] —P(s)

P (Dve+PLA0)]
and we get
- ;[ f4(0)—1]
bi (B> =7 e+ PL7,(0)]
From (25) and (27), we get (17).
(iii) From (21) and (25), we get (18).
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(iv) From (17) and (18), we get the equation (19).
Q.E.B.
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