Theoretical Study of Hydration of Zeolite NaA

제올라이트 NaA의 수화에 관한 이론적 연구

  • Kyoung Tai No (Department of Chemistry, Korea Advanced Institute of Science) ;
  • Mu Shik Jhon (Department of Chemistry, Korea Advanced Institute of Science)
  • Published : 1979.12.30

Abstract

Hydration scheme and hydration energy are determined in ${\alpha}$ cage of zeolite NaA. The selectivity between Na(1) and Na(2) is determined from energy calculation. The waters in ${\alpha}$ cage form a distorted dodecahedral cage. The average binding energies of water(1), water(2) and water(3) are -29.847, -25.344 and -15.888 kcal/mole respectively. The positions of oxygens of hydrated waters are in good agreement with the X-ray data. The heat of immersion curve is also obtained. This result is in good agreement with the differential heat of sorption curve obtained from differential thermal analysis. It is concluded that theoretical method provides considerable uses in the determination and understanding of the hydration and interaction energy of zeolites sorbate binding.

Zeolite NaA의 ${\alpha}$ cage에 있어서의 수화에너지와 그 위치를 결정하였다. Na(1)과 Na(2)사이의 site selectivity를 에너지 계산으로부터 결정하였는데 Na(1)이 Na(2)보다 선택성이 있는 것을 알 수 있었다. ${\alpha}$-Cage에 수화된 물들은 일그러진 정 12면체를 형성함을 알 수 있었다. Water(1), Water(2), Water(3)의 평균수화에너지는 각각 -29.847, -25.344, -15.888kcal/mole이다. 이 에너지 계산으로부터 얻어진 수화된 물들의 산소원자의 위치는 X선값과 잘 일치함을 보여준다. 또 수화된 정도에 따른 수화에너지의 그래프를 얻었다. 이 결과는 실험으로부터 얻어진 differential heat of sorption curve와 잘 일치함을 보여준다. ${\alpha}$ Cage 속에서의 유전상수는 3.5가 적합함을 알 수 있었다.

Keywords

References

  1. Zeolite Molecular Sieve D. W. Breck
  2. Advan. Chem. Ser. R. F. Gould(ed.)
  3. Advan. Chem. Ser. R. F. Gould(ed.)
  4. J. Phys. Chem. v.77 R. Y. Yanagida;A. A. Amaro;K. Seff
  5. Acta Crystallogr. v.13 P. A. Howell
  6. J. Phys. Chem. v.80 T. B. Vance, Jr.;K. Seff
  7. J. Phys. Chem. v.79 P. C. W. Leung;K. B. Kunz;K. Seff;I. E. Maxwell
  8. J. Phys. Chem. v.80 E. C. de Lara;T. N. Tan
  9. J. Phys. Chem. v.82 K. Ogawa;M. Nitta;K. Aomura
  10. Z. Kristallgor. v.133 V. Gramlich;W. M. Meier
  11. Proc. Natl. Acad. Sci. U. S. v.14 L. Pauling;D. M. Yost
  12. The Nature of Chemical Bond L. Pauling
  13. J. Amer. Chem. Soc. v.83 R. P. Ickowski;J. L. Margrave
  14. J. Amer. Chem. Soc. v.84 J. Hinze;H. H. Jaffe
  15. J. Phys. Chem. v.69 J. E. Huheey
  16. Acta Cryst. v.A31 J. Calliet;P. Claverie
  17. Biopolymers v.13 J. Calliet;P. Claverie
  18. Biochim. Biophys. Acta v.474 D. Perahia;M. S. Jhon;B. Pullman
  19. Physik. Z. v.33 J. G. Kirkwood
  20. J. Phys. Chem. v.68 A. Bondi
  21. J. Phys. Chem. v.76 M. J. Huron;P. Claverie
  22. J. Colloid Interface Sci. v.59 B. W. Davis
  23. Chem. Phys. Lett. v.4 M. J. Huron;P. Claverie
  24. Physical Chemistry E. A. Moelwyn-Hughes
  25. J. Phys. Chem. v.74 I. Dzidic;P. Kebarle
  26. Bull. Chem. Soc. Jpn. v.50 M. Hino
  27. Acta Crystallogr. v.22 K. Seff;D. P. Shoemaker
  28. J. Chem. Soc. Faraday Trans.1 v.71 T. Takaishi;Y. Yatsurugi;A. Yusa;T. Kuratomi
  29. J. Chem. Phys. v.47 H. B. Thompson
  30. J. Chem. Phys. v.53 H. B. Thompson
  31. A.E.R.E. Report R 7125 FORTRAN Subroutines for Minimization by Quasi-Newton Methods R. Fletcher
  32. J. Phys. Chem. v.72 J. W. Ward
  33. J. Chem. Soc. R. M. Barrer;A. F. Denny
  34. J. Chem. Soc. R. M. Barrer;D. A. Langley