탄산에틸렌에서의 1-1 전해질의 전기전도도에 관한 연구

Conductances of 1-1 Electrolytes in Ethylene Carbonate

  • 김시중 (고려대학교 이과대학 화학과) ;
  • 장주환 (고려대학교 이과대학 화학과) ;
  • 김진호 (고려대학교 이과대학 화학과) ;
  • 강순희 (고려대학교 이과대학 화학과)
  • 발행 : 1979.08.30

초록

물아닌 용매이고 비양성자성 용매인 탄산에틸렌에서 NaI, KI, $NH_4I,\;(CH_3)_4NI,\;(C_2H_5)_4NI,\;(C_2H_5)_3NHI,\;(C_2H_5)_2NH_2I,\;(C_2H_5)NH_3I$, NaPic, (Pic피크르산이온) 및 KPic의 전기전도도를 40$^{\circ}C에서 측정하고, Fuoss-Onsager-Skinner식에 의하여 한계당량전도도와 한계이온당량전도도를 구한 결과, $Na^+의 순위로서 용매화현상의 역순위과 일치하며 $(C_2H_5)_4N^+<(C_2H_5)_3NH^+<(CH_3)_4N^+<(C_2H_5)_2NH_2^+<(C_2H_5)NH_3^+ $ 로서 질량이동의 순위와 일치했다. Fuosso-Krauss 식으로 염들의 해리상수를 구한 결과 탐산에틸렌은 이들 염에 대하여 좋은 이온화 용매임을 알았다. 한편 이온들의 Stokes 반지름으로 부터 유효 반지름을 구한 결과 요오드화이온은 분명히 용매화 되었고 테트라알킬암모늄이온과 그의 치환체이온들은 거의 용매화 되어있지 않은것 같다.

The equivalent conductances of sodium, potassium, ammonium, tetramethylammonium, triethylammonium, diethylammonium and ethylammonium iodide, and picrate salts of sodium and potassium in ethylene carbonate have been measured at 40.0 $^{\circ}C. The limiting equivalent conductances of the salts have been computed by Fuoss-Onsager-Skinner equation. The limiting ionic equivalent conductances of $Na^+,\;K^+,\;and\;NH^+$ are in order of $Na^+ which is the reverse order of solvation for the ions in any solution, And the order of limiting ionic equivalent conductances for alkylammonium ions is $(C_2H_5)_4N^+<(C_2H_5)_3NH^+<(CH_3)_4N^+<(C_2H_5)_2NH_2^+<(C_2H_5)NH_3^+$ which coincides with the order of mass transfer. From the dissociation constants of the saltss determinde by Fuoss-Kraus method, it is found that ethyene carbonate is a good ionizing solvent for the salts. In addition, Stokes radii and effective fadii of ions have been calculated by Stokes law and Nightingale method, repectively. From the results, it appears tha alkylammonium ions and picrate ion seem to be not solvated, and tha iodide ion is fairly solvated in ethylene carbonate.

키워드

참고문헌

  1. J. Phys. Chem. v.73 L. M. Mukherjee;D. P. Boden
  2. J. Phys. Chem. v.74 L. M. Mukherjee;D. P. Boden;R. Lindarer
  3. J. Chem. Soc. R. F. Kempa;W. H. Lee
  4. J. Chem. Soc. Fasaday I G. Petrella;A. Sacco
  5. J. Phys. Chem. v.73 O. D. Benner;S. J. Kim;A. Torres
  6. J. Phys. Chem. v.69 R. M. Fuoss;L. Onsager;J.T. Skinner
  7. J. Amer Chem. Soc. v.55 R. M. Fuoss;C. A. Kraus
  8. Z. Angew Chem. v.41 Uhlich;Burn
  9. J. Chem. Thermodynamins v.3 Si-Joong Kim;O.D. Bonner;Doo-Soon Shin
  10. J. Phys Chem. v.63 E. R. Nightingale
  11. Electrolyte Solutions(2ed Ed) R. A. Robinson;R.H. Stokes
  12. J. Chem. Phys. v.38 no.1603 R. Zwanzig
  13. J. Phys. Chem. v.68 E. T. Passerson
  14. J. Inorg. Nucl. Chem. v.33 R. C. Paul(et al.)
  15. Trans. Faraday Soc. v.57 J. E. Prue;P. J. Sherington
  16. J. Chem. Phys. v.66 D. Atlani;J. C. Justica;M. Quintin;P. Dubois
  17. Can. J. Chem. v.46 R. D. Singh;P. P. Rastogi;R. M. Gopal
  18. J. Amer. Chem. Soc. v.79 L. R. Dawson;E. D. Wilhoit;P. G.Nears
  19. Quart. Rev. v.16 A. J. Parker
  20. J. Phy, Chem. v.72 M. D. Monica;U. Lamanna;L. Sanatore
  21. J. Phy, Chem. v.69 R. Gopal;O. N. Bhatnagar
  22. J. Phy, Chem. v.74 M. D. Monica;L. Senatire