Calculation of the Dipole Moments for Transition Metal Complexes by Valence Bond Method (I). Calculation of the Dipole Moments for Octahedral $[M(III)O_3S_3]$ Type Complexes [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) and Os(III)]

원자가 결합법에 의한 전이원소 착물에 대한 쌍극자모멘트의 계산 (제1보). 팔면체 $[M(III)O_3S_3]$ 형태 착물의 쌍극자모멘트의 계산 [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) 및 Os(III)]

  • Sangwoon Ahn (Department of Chemistry, Jeonbug National University) ;
  • Jeoung Soo Ko (Department of Chemistry, Jeonbug National University)
  • 안상운 (전북대학교문리과대학화학과) ;
  • 고정수 (전북대학교문리과대학화학과)
  • Published : 1979.08.30

Abstract

A valence bond method of calculation of the dipole moments for octahedral $(M(III)0_3S_3)$ type complexes are developed, using $d^2sp^3 $hybrid orbitals of the central metal ions and the single basis set orbital of ligands. (M (III) =V (III), Cr (III), Mn (III), Fe (III), Co (III), Ru (III), Rh (III) and OS (III)). In this method the mixing coefficient of the valence basis sets for the central metal ion with the appropriate ligand orbitals is not required to be the same, differently from the molecular orbital method. The valence bond method is much more easier to calculate the dipole moments for octahedral complexes than the approximate molecular orbital method and the calculated results are also in the range of the experimental vaues.

금속이온의 $d^2sp^3$ 혼성궤도함수와 리간드의 singIe basis set 궤도함수를 사용하여 팔면체 [M(II)O_3S_3]$형태 착물의 쌍극자모멘트를 계산하는 원자가결합법을 발전시켰다. [M(III)=V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) 및 Os(III)]. 이 새로운 방법에 있어서 금속이온의 valence basis sets와 리간드 궤도함수사이의 혼성계수가 같다고 가정할 필요가 없으며 이것이 근사분자궤도함수법에 의한 팔면체 전이원소 착물의 쌍극자모멘트를 계산하는 방법과 다른점이다. 원자가결합법에서는 근사분자궤도함수법에서 보다도 훨씬 쉽게 팔면체착물의 쌍극자 모멘트를 계산할 수 있으며 계산한 쌍극자 모멘트의 값이 또한 실험치 범위에든다.

Keywords

References

  1. J. Amer. Chem. Soc v.53 L. Pauling
  2. The Nature of The Chemical Bond(2nd Ed) L. Pauling
  3. Structure of Molecules and the Chemical Bond Y.K. Syrkin;M. E. Dyatkina
  4. J. Chem. Phys v.8 G. E. Kimball
  5. Physical Chemistry v.V C. A. Coulson
  6. Elementary Quantum Chemistry F. L. Pilar
  7. J. Korean Chem. Soc v.22 S. Ahn
  8. Chemical Application of Group Theory(2nd Ed) F. A. Cotton
  9. Basic Principles of Ligand Field Theory H.L. Schlafer;G. Glieman
  10. Molecular Orbital Theory C. J. Ballhausen;H. B. Gray
  11. Inorg. Chem v.3 H. D. Bedon;S. M. Horner;S. Y. Tyree Jr.
  12. J. Korean Chem. Soc v.22 S. Ahn
  13. Progress in Chemistry & Chemical Industry v.17 S. Ahn
  14. Stereochemistry and Bonding in Inorganic Chemistry J. E. Fergussen
  15. J. Chem. Soc. Dalton M. Das;S. E. Livingstone;S. W. Fili pczuk;J. W. Haves;D.V. Radford
  16. Aust. J. Chem v.29 M. Das;S. E. Livingstone;I. H. Mayfield;S. Moore;N. Saha
  17. Aust. J. Chem v.29 S. E. Livingstone;J. E. Oluka
  18. J. Chem. Soc. Dalton M. Das;S. E. Livingstone
  19. J. Chem. Soc. Dalton M. Das;S. E. Livingstone