Aliphatic Acetylenic Alcohol의 電極反應過程

Electorchemical Reduction Behavior of Aliphatic Acetylenic Alcohol

  • 김원택 (漢陽大學校 工科大學 工業化學科) ;
  • 김진일 (漢陽大學校 工科大學 工業化學科) ;
  • 곽태영 (漢陽大學校 工科大學 工業化學科) ;
  • 이주성 (漢陽大學校 工科大學 工業化學科)
  • Kim Won Taik (Department of Industrial Chemistry, College of Engineering) ;
  • Kim, Jin Il (Department of Industrial Chemistry, College of Engineering) ;
  • Kwak Tai-Young (Department of Industrial Chemistry, College of Engineering) ;
  • Lee Ju-Seong (Department of Industrial Chemistry, College of Engineering)
  • 발행 : 1979.06.30

초록

각종 陰極, 卽 Ti, Zr, Ni, Pt, Cu, Ag, Au, Zn, Hg, Pb 및 흑연의 사용으로 2-butyne-1, 4-diol (BID)로부터 2-butene-1,4-diol (BED)까지의 電氣化學的 還元擧動에 관하여 연구하였다. IB族 金屬을 陰極으로 사용한 陰極分極曲線은 알칼리용액중에서 BID에 對해 한개의 還元波가 생기나 BED의 경우는 지지전해질내에서와 마찬가지로 還元波가 생기지 않았다. 고로 BID환원반응에 가장 적당한 陰極은 Cu, Ag, Au임을 알았다. 알칼리性 BID용액에서 銀電極을 사용한 電位走査法에서 peak電流는 電位走査速度의 제곱근과 BID농도에 比例하였다. 限界電流의 對數와 絶對溫度의 逆數의 관계로부터 구한 BID의 活性化에너지는 3.75kcal/mole였다. 고로 알칼리용액중 銀電極을 사용한 BID의 還元電流는 自己擴散에 의한 擴散電流임을 알았다.

Electrochemical reduction behavior from 2-butyne-1, 4-diol (BID) to 2-butene-1,4-diol (BED) by the use of various cathodes, such as Ti, Zr, Ni, Pt, Cu, Ag, Au, Zn, Hg, Pb and graphite has been studied. It has been found that cathodic polarization curve with metal of IB subgroup such as Cu, Ag and Au consisted of one wave in BID-alkaline solution, whereas it was not formed any wave in BED solution. Therefore, it was found that the cathode which was the most suitable in order to proceed in this reaction was Cu, Ag and Au. At cyclic voltammetry using a silver cathode in BID-alkaline solution, the current of the peak was proportional to square root of the sweep rate of potential and also proportional to concentration of BID. Activation energy was calculated for 3.75 kcal/mole from the plot of log $I_l$ vs. 1/T. Consequently, the reduction current of BID with a silver cathode in alkaline solution was found the diffusion current.

키워드

참고문헌

  1. J. Amer. Chem. Soc. v.73 C. S. Marvel;C. H. Young
  2. DBP v.1 no.139 E. V. Hort;D. E. Graham
  3. Acetylene and Carbon Monoxide Chemistry J. W. Copenhaver(et al.)
  4. Denkikagaku v.25 J. Kato;M. Sakuma
  5. Denkikagaku v.28 M. Sakuma
  6. Vestnik Moskov. Univ. Ser. Mat. Mekh. Astron. Fiz. Khim. v.6 G. P. Khomchenko(et al.)
  7. CA v.54 G. P. Khomchenko(et al.)
  8. Zh. Fiz. Khim. Moskva. v.49 G. P. Khomchenko(et al.)
  9. CA v.84 G. P. Khomchenko(et al.)
  10. Zh. Fiz. Khim. v.51 G. P. Khomchenko(et al.)
  11. CA v.88 G. P. Khomchenko(et al.)
  12. Purification of Laboratory Chemicals D. D. Perrin(et al.)
  13. Denkikagaku v.39 T. Takamura
  14. Anal. Chem. v.36 R. S. Nicholson;I. Shain
  15. Wiley-Interscience v.1 Techniques of Electrochemistry J. Kuta;E. Yeager;A. J. Salkind(Ed.)
  16. Electrochemistry of Organic Compounds A. P. Tomilov(et al.);J. Schmorak(tr.)