Reductive Amination of ${\alpha}$,${\beta}$-Unsaturated Carbonyl Compounds with Tetracarbonylhydridoferrate as a Reducing Agent

${\alpha}$,${\beta}$-不飽和 카르보닐化合物의 還元 아미노화反應

  • Kim Hong-Seok (Department of Chemistry, Korea Advanced Institute of Science) ;
  • Shim Sang Chul (Department of Chemistry, Korea Advanced Institute of Science) ;
  • Shim Sang Chull (Department of Polymer Science, Engineering College, Kyungpook National University)
  • 김홍석 (韓國科學院 化學科) ;
  • 심상철 (韓國科學院 化學科) ;
  • 심상철 (慶北大學校 工科大學 高分子工學科)
  • Published : 1979.04.30

Abstract

The reductive amination of three ${\alpha}$,${\beta}$-unsaturated aldehydes, cinnamaldehyde, crotonaldehyde, and acrolein are carried out successfully by tetracarbonylhydridoferrate in the presence of various primary amines. In a typical reaction, a mixture of potassium tetracarbonylhydridoferrate (22 mmole), an amine (22∼44 mole) and ${\alpha}$,${\beta}$-unsaturated aldehyde (22 mmole), in ethanol (30∼50 ml) was stirred for 9∼60 hours at room temperature under carbon monoxide atmosphere. All the products were characterized as secondary amines by mass, infrared, and nmr spectra as well as gas chromatographic data.

세개의 ${\alpha}$,${\beta}$-불포화알데히드, 신남알데히드, 크로톤알데히드, 아크로레인을 여러가지 일차 아민 존재하에서 테트라카르보닐철산염으로 환원시켜 상당히 다른 수득률로 N-알킬아민을 합성하였다. 보통, $KHFe(CO)_4$ (22mmole)와 일차아민(22∼44mmole)과 ${\alpha}$,${\beta}$-불포화 알데히드 (22mmole)를 에탄올 용매에 넣고 일산화탄소 분위기하에 실온에서 9∼60시간 자석 젓개로 저어주면 일산화탄소를 천천히 흡수하면서 반응이 진행된다. 생성물은 가스크로마토그래피, 질량분석스펙트럼, 핵자기공명스펙트럼, 적외선스펙트럼 등으로 그 구조를 알았다.

Keywords

References

  1. 有合化 v.35 Y. Watanabe;Y. Takegami
  2. Synthesis v.56 A. P. Kozikowski;H. F. Wetter
  3. J. Chem. Soc., Perkin Trans. v.1 G. Cainelli;M. Panunzio;A. Umani-Ronchi
  4. Tetrahedron Lett. M. Yamashita;Y. Watanable;T. Mitsudo;Y. Takegami
  5. Tetrahedron Lett. G. Cainelli;R. Panunzio;A. Umani-Ronchi
  6. Tetrahedron Lett. Y. Watanabe;M. Yamahsita;T.M. Yamashita;T. Mitsudo;M. Tanaka;Y. Takegami
  7. Synthesis G. P. Boldrini;M. Panunzio;A. Umani-Rochi
  8. Chem. Lett. Y. Watanabe;T. Mitsudo;M. Yamashita;S. C. Shim;Y. Takegami
  9. Chem. Lett. Y. Watanabe;T. Mitsudo;M. Yamashita;S. C. Shim;Y. Takegami
  10. Bull. Chem. Soc. Jpn. v.44 T. Mitsudo;Y. Watanable;M. Tanaka;Y. Takegami
  11. Bull. Chem. Soc. Jpn. v.48 T. Mitsudo;Y. Watanable;M. Tanaka;Y.Takegami
  12. Bull. Chem. Soc. Jpn. v.49 Y. Watanabe;S. C. Shim;T. Mitsudo;M. Yamashita;Y. Takegami
  13. Chem. Lett. T. Mitsudo;Y. Watanabe;M. Yamashita;Y. Takegami
  14. Bull. Chem. Soc. Jpn. v.42 Y. Takegami;Y. Watanbe;T. Mitsudo;T. Okajima
  15. Tetrahedron Lett. H. Alper
  16. J. Org. Chem. v.40 H. Alper
  17. J. Org. Chem. v.37 R. Noyori;I. Umeda;T. Ishigami
  18. J. Amer. Chem. Soc. v.71 P. Krumholz;H. M. A. Stettiner
  19. Infrared Spectra of Complex Molecules(2nd ed.) L. J. Bellamy
  20. Infrared Absorption Spectroscopy K. Nakanishi
  21. The Aldrich Library of NMR Spectra v.II C. J. Pouchert;J. R. Campbell
  22. High Resolution NMR Spectra Catalog N. S. Bhacca;D. P. Hollis;L. F. Johnson;E. A. Pier
  23. J. Gen. Chem. (U. S. S. R) v.16 B. I. Ardashev
  24. Chem. Abs. v.41 B. I. Ardashev
  25. J. Org. Chem. v.8 Utermohlen
  26. Aust. J. Chem. v.16 G. M. Badger;H. P. Crocker;B. C. Eppis;J. A. Gayler;W. E. Matthews;W. G. C. Raper;E. L. Samuel;T. M. Spotwood
  27. J. Org. Chem. v.42 M. G. Andrews;J. A. Mosbo